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Abstract: An integer distance graph is a graph G(D) with the set Z of all integers as vertex set and two vertices
u,v € Z are adjacent if and only if |u — v| € D, where the distance set D is a subset of positive integers. A
k-vertex coloring of a graph G is a mapping f from V(G) to [0, k — 1]. A path k-vertex coloring of a graph G is a
k-vertex coloring such that every connected component is a path in the induced subgraph of V;(1 < ¢ < k), where
the vertex set V; is the subset of vertices assigned color <. The vertex linear arboricity of a graph G is the minimum
positive integer k such that G has a path k-vertex coloring. In this paper, we studied the vertex linear arboricity of
the integer distance graph G (Dy,,1.4), where Dy, 14 = [1,m] \ [1, 4], and proved that vla (G (Dp,1,4)) = [ ] +1

for every integer m > 6.
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1 Introduction

In this paper, R and Z denote the sets of all real
numbers and all integers, respectively. For x € R,
let =] denote the greatest integer not exceeding z,
and [z] denote the least integer not less than x. Let
[m,n] = {m,---,n} denote the set of all integers
from m to n where m < n and [m, n] = 0 if m > n.
|S| denotes the cardinality of a set S and |S| = +o00
means that S is an infinite set.

In recent years, many parameters and graph class-
es were studied. For examples, He et al. in [7] ob-
tained the linear k-arboricity of the Mycielski graph
M(K,), Lai et al.in [9] gave a survey for the more
recent developments of the research on supereuleri-
an graphs and the related problems, and Jiang and
Zhang in [8] studied Randomly M;-decomposable
multigraphs and M»-equipackable multigraphs.

Coloring of graphs is one of the most fascinat-
ing and well-studied topic in graph theory. The prob-
lem can be traced back to the Four Color Conjec-
ture. It was motivated by application problems as the
frequency assignment problem (e.g., L(2, 1)-labeling
and the multi-level distance labeling), the control of
traffic signals (e.g., circular coloring) and other prob-
lems from wide range of industrial and technology ar-
eas. A vertex coloring can be viewed as a function
from V to Z. More precisely, a vertex k-coloring of
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a graph G is a mapping f from V' (G) to [1, k]. Given
a vertex k-coloring, let V; denote the set of all ver-
tices of G which colored with 7, and (V;) denote the
subgraph induced by V; in G. If Vj is an independen-
t set for every 1 < ¢ < k, then f is called a proper
k-coloring. The chromatic number x(G) of a graph
G is the minimum integer k for which G has a prop-
er k-coloring. If V; induces a subgraph whose con-
nected components are paths, then f is called a path
k-coloring. The vertex linear arboricity of a graph
G, denoted by vla(G), is the minimum number k such
that G has a path k-coloring. Clearly, x(G) > vla(G)
for any graph G.

Matsumoto [11] proved that for a finite graph G,

A(G) +1

ola(G) < =12

I;
moreover, if A(G) is even, then

vla(G) = (ww
2

if and only if G is a complete graph of order A(G) +
1 or a cycle. Goddard [5] and Poh [12] proved that
vla(G) < 3 for a planar graph G. Akiyama et al. [1]
proved that vla(G) < 2 if G is an outerplanar graph.

Let S be a subset of real numbers and D a set of
positive real numbers. Then distance graph G(S, D)
has the vertex set S and two real numbers x and y are
adjacent if and only if |x — y| € D, where the set
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D is called the distance set. In particular, if all ele-
ments of D are positive integers and S = Z, then the
graph G(Z, D), or G(D) in short, is called integer dis-
tance graph. The distance graphs were introduced by
Eggleton et al.[3] in 1985 to study the chromatic num-
ber. They proved that x(G(R, D)) = n + 2, where D
is an interval between 1 and ¢, and n satisfies 1 < n <
0 < n+1. They also partially determined the values of
X(G(Dm. 1)), where Dy, = [1,m] \ {k}. The com-
plete solution to x (G(D;y, 1)) is provided by Chang et
al.in [2]. Many peoples discussed the chromatic num-
ber of integer distance graph G (D). More results on
the chromatic number of integer distance graphs, see
[3, 4, 6, 10, 13] and [14]. In [16] and [17], it is con-
sidered that vertex linear arboricity of the real distance
graphs. In [15], it is studied that the vertex linear ar-
boricity of G(D,, ) where Dy, ,, = [1,m] \ {k}. In
[18], it is obtained that vla (G (Dp13)) = [%] + 1.

Now the integer distance graph is applied widely
to gene sequence, sequential series, on-line computing
and so on.

Let Dy, 14 = [1,m] \ {1,2,3,4}. In this paper,
we shall prove that

vla (G (Dmaa)) = [%] +1

form > 6.

2 Main results
Form =5, D514 = {5}, so we have
vla(G(D5,1’4)) =1.

For6 <m < 7,letn = 14l + j, f(n) = 0if 0 <
j<T,and f(n) =1if 7 < j < 14. Then f is a path
coloring, and thus

vla (G (Dm,1,4)) S 2.

Since vertices 0, 5, 10, 15, 20, 25, 30, 24, 18, 12,6, 0
in G (D,y,1,4) induce a cycle, we obtained that

vla (G (Dma4)) = 2.
Theorem 1. For any integer m > 8, we have
vla (G (Dmaya)) = [%] + 1.
Proof. At first we give a path coloring of G (Dj,1,4).

Let f(n)=iforn=Ti+50<j<6,0<i<
[%], and for any integer ¢, let

(%] +1) +n)=f(n).
Then f is a path coloring, and

vla (G (Dmya)) < [%]+ 1.
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In the following, we shall show that
vla (G (Dm,14)) 2 [F] +1

by contradiction approach.
Assume that the result is not right, that is,

vla (G (Dmaa)) < [%] =q,

then G (D, 1.4) has a path g-coloring f. Clearly,
f is also a path g-coloring of the subgraph H in-
duced by vertex subset [0, 7¢] of G (Dy,,1,4). Note
that |V (H)| = 7q + 1. Hence there are at least eight
vertices

0<)ag< a1 <---<ar(<7)

with the same color a.

Claim 1: If ag — ag < m, then

ag=as5+1=as4+2=a3+3
=ay+4=a1+5=ag+6.

Otherwise, there is some 0 < ¢ < 5 such that
Qi+l —a; > 1,

then apag, apas, apas € E(H) or apag, aiag,
asas € E(H), i e. ap,a4,as5,a6 form a K3, or
ap, a1, az,ae form a K3, a contradiction. Hence
Claim 1 holds.

Claim 2: min {ag — ag,a7 — a1} > m.
Assume that ag — ag < m, then by Claim 1, we
can obtain that

ag=as5+1=a4+2=a3+3
=ar+4=a1+5=ag+6,

SO agag, apas,ara¢ € FE(H), thus apar,agar ¢
E (H). Therefore a; —ag > m,and a; —ag =t < 4
ora; —ag > m. If az —ag = t < 4, then
asay, asar,asa; € E (H) when 3 < a7y — ag < 4,
and apar, arar,asay; € E(H)whenl < ar—ag < 2,
a contradiction. Hence a7 — ag > m, so ay >
ag +m—+12>m+ 7> 7q, acontradiction, too.

Therefore ag — ag > m. Similarly, a; — a; > m.
Thus Claim 2 is proved.

By Claim 2, we have m < 7q — 2.

Claim 3: If a;a;4; € E (H) for some j > 3, then
AiGiyj—2, G205, Gip1ai4 -1 ¢ E(H).
Otherwise, if a;a;1j—2 € E (H), then

5 < Gjyj2—a; < Qipj1— a; < Qipj — a4 <M,
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SO @;, Gjyj—2,0i+j—1,0;+; form a K 3, a contradic-
tion. Thus a;ai4;—2 ¢ E(H). Similarly, a;40a;y;
Qf E(H) If Ai+10i45—1 € E(H), then i, Qitji—1,
@i4+1, a;4+; form a 4-cycle, a contradiction, too.

Claim 4: There are at most eight vertices in H
with the same color.
Otherwise, assume that there are nine vertices

0<)ag< a1 <---<ag(<7)

with the same color «, then a;+¢—a; > m by Claim 2,
soa; € [i,1+3],and a4 € [m+i+ 1, m+ i+ 4]
where i € [0, 2].

(DIf ap = 5, then ag = m + 6,m = T(q —
1) + 1, and asay € E(H). Moreover, by Claim 3,
agas,agar ¢ E(H), i. e, 3 < az — a2 < 4, and
3<ar—ag4 <4,s08<as<9,anday > ay —4 >
m—2,thusm =8,7 <ag <8and 10 < a7 < 12.
Hence a3, a4, as, ag form a K 3, a contradiction.

(2) If ay = 4, then we have ag > m + 5, m =
7(¢g—1)+7,1<j <2 and agag € E(H). By Claim
3, asay4, 406 ¢ E(H), SO

m—3<ag—az <8,

and m + 5 < ag < m + 6. If agay; € E(H), then
agas ¢ E(H),i. e, a5 —az < 4,and 7 < a5 < 8,
o0 asag,asas € E(H), thus asag ¢ E(H), hence
a3 = 5, a3 = m + 6, and m = 8. Moreover,
asay € E(H), and then asag, asa; ¢ E(H) (other-
wise, ao, ag, a3, a7y form a cycle, or as, as, a4, a7 for-
m a K 3), thatis, ag = 9,a7 < a4 + 4 < 11, thus
a1, az, ae,ag form a K 3, a contradiction. Therefore
asay; ¢ E(H),i. e.,a; = m+ 5,a5 = m + 6, then
m = 8since j = 1, and aqa7, agas € E(H), so ag =
5 (otherwise, as, ar, a4, ag form a 4-cycle), and then
as > 9 (otherwise, ay, a7, as, ag form a 4-cycle), thus
asas, asag, asar € E(H), and azas ¢ E(H),that is,
as = 9, but ag, as, ag, aq, ay, az, ag form a 7-cycle in
this case, a contradiction, too.

(3)Assume that as = 3. By Claim 2, it is easy to
know that

and 6 < a4 < 8, thusm € [8,9], 9 < ag < 12,

m="7q—1)+j

with1 < j < 3.

Suppose that asag € E(H), then, by Claim 3,
agay, asag, azas ¢ E(H),som — 2 < ag — ay < 8,
as —az < 4,and 5 < ag4 < 7, thus m € [8,10],
9 <as < 1ll,and m+4 < ag < m+ 6 by
Claim 2. If agay; € E(H), then agas ¢ E(H), i. e.,
as —az < 4and 6 < a5 < 7,50 apas, asas € E(H),
thus as —a; = 4, a5 = 6, and a7y < a5 + 4 = 10,
hence a7y = ag + 1 = 10, that is, m = 8, and
a2, as, a4, a7 form a K 3, a contradiction. Therefore,
asay ¢ E(H),i. e, ar > m+4,a3 > m + 5,
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thus j < 2, and aqay € E(H), so asay ¢ E(H)
orasay ¢ E(H),i. e., a3 = 4 and a; = m + 5,
or a; — as < 4. In the former case, azag € F(H),
6 < as < 8, so ap,as,ar,ag form a Ky 3, a con-
tradiction. In the latter case, we may suppose that
asay; € E(H), then asas € E(H) (otherwise, 5 <
as < 7, then a7 < a5 + 4 < 11, which contradicts
a7 > m+4),s0 asag, aiag, apas ¢ E(H) (otherwise,
a1, az,as,ag form a Ky 3, or ay, as, as, ag form a cy-
cle, or ag, a1, az, as form a K 3), then asag € E(H)
(otherwise, a4 = 5 and ag = m + 6, so ag = 4,
and a5 < 8 which contradicts asag ¢ E(H)), thus
apas ¢ E(H) (otherwise, ag, a4, a7, ag form a K 3),
that is, a4 = ag + 4, hence aqa6 € E(H), and ay4, a,
a7, ag form a K 3, a contradiction, too.

Suppose that asag ¢ FE(H), then ag = m +
4,a; =m+5,ag=m+6,andm =7(q—1) + 1,
so agas € FE(H) (otherwise, as,ag,az,as form a
Kljg), and asas, asay, a4as ¢ E(H) by Claim 3, thus
as < 7, and asay ¢ E(H) (otherwise, az,as, ar, ag
form a K13), 1. e, a5 > m+ 1. If agay ¢ E(H),
then a4 = 5 (otherwise, 6 < a4 < 7 and ay, ag, a7, ag
form a K 3), thus, a5 = 9 and m = 8, hence
a1, az,as,ag form a K4 3, a contradiction. Therefore,
agay € FE(H), so ajas,apay ¢ E(H) (otherwise,
a1, a4, a2,as form a 4-cycle, or ag, a1, as, aq form a
Ki3), thusay > m + 1, a5 — a1 > m + 1, and
azag ¢ E(H) (otherwise, ag, ag, a7, ag form a K7 3),
1. e., 4 <asz <5,and m = 8. Moreover, ay = 9 and
az = 5, then agz, as, ag, ar form a K7 3, a contradic-
tion, too.

(4) Suppose that ao = 2. Then a; = 1, and ag =
0.

If agag € E(H),thenm +1 < ag < m + 2,
as —az3 <4, m-—3<ag—4<ag4 <6,a8>m-+3
by Claims 2-3, thus apas € E(H), and m € [8,9].
Moreover, ajaqy ¢ E(H) or asa; ¢ E(H), i. e.,
a4 = b,oras = 6 and a7 = m—+2 = 10. In the former
case, it is obvious that ag, a1, as, ag induce a K1 3 if
as = 6, ag,a1,a2,a5 induce a K3 if 6 < a5 <
m, and a1, az, a3, as induce a Ky 3ifas = m + 1, a
contradiction. In the latter case, ag, a1, aq, ag induce
a K4 3, a contradiction.

Suppose that asag ¢ E(H), i. e., ag > m + 3.
If agas € FE(H), then a5 > m + 1 (otherwise,
ap, a1, a, as induce a Kl,S)a SO as <6 and a4 > as —
4 by Claim 3, thus a3z < 4 (otherwise, ag, as, ag, ay
induce a K 3 if az3 = 5, and ao, a1, a3, ag induce a
K, 3 if a3 = 6), hence azas € E(H), a5 > m + 2
and ay > a5 —4 > m — 2 by ajas,a4a5 ¢ E(H),
therefore ag, a1, a4,ag induce a Ky3 if ay = 6,
ap, a1, az,as induce a K3 if 6 < ag < m, and
as, a4, a3, as induce a cycle if a4 > m, a contradic-
tion. If asas ¢ E(H), then as < 6 or a5 > m + 3.
In the former case, agas € E(H), and asay ¢ E(H)
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orasag ¢ E(H), so a; = 6,a7 = 10 and m = 8, or
as = 5 and ag = m + 6, hence ag, a1, a5, ag induce
a K3, or ag,as,ae,ar induce a K 3, a contradic-
tion. In the latter case, a5 = m +3 = ag — 1 =
a; —2 = ag — 3, thenagy = 4orag = m+ 2
(otherwise, a4, as, ag, a7 induce a K1 3 when ay = 5,
ap,at, a4, ag induce a K 3 when 6 < ay < m, and
ai, asz, a4, ag induce a K173 when ay = m + 1). If
a4 = 4, then every color colored seven consecutive
vertices except « and some color 3 that colored

b5>b4>bg>b2>b1>b0(25)

in H, so vertices m + 8, m + 9, m + 10 receive color
[ and are all adjacent to bs, a contradiction. If ay =
m + 2, then ag = 3 (otherwise, ag, a4, a5, ag induce
a Ky 3when4 < a3z <m — 3, ag, a1, a3, ag induce a
Ki3whenm—2 < a3 < m, and a1, as, a3, ag induce
a K13 when ag = m + 1), thus every color colored
seven consecutive vertices except « and some color 3
that colored

(m+12)b5>b4>b3>b2>b1>b0(24)

in H, so vertices —4, —3, —2 receive color 5 and are
all adjacent to by, a contradiction, too.
Hence Claim 4 holds.

Claim 5: In H, if
b—a="7(q—-1)—2,
(ie,b—t<a—1)

t>m+1,
a+t—b>1

and 7(q — 1) vertices in [a,b] U {a + t} (or {b — ¢t} U
[a, b]) colored ¢ — 1 colors, then a and a + t (or a and
b — t) have the same color.

Assume that a and a + t have different colors,
then, by Claim 1, each color colored consecutive sev-
en vertices, which is impossible. Similarly, @ and b—¢
have the same color.

Claim 6: m = 7(¢ — 1) + 1.

Suppose that

m>T7(q—1)+2>9.

By Claim 2, ag — ap > m and a7 — a; > m. Then
there is 1 < h < 5 such that a;, — a9 < m, and
ap+1 — Qo > M.

Casel. h = 1.
Then a1 — ag < m, and as — ag > m, SO

ar—ay <7¢g—(m+1) < (m+5)—(m+1) <4,

which contradicts a7 — as > 5.

Case 2. h = 2.
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We have as — ag < m, a3 — ag > m, and
ay —a3 <7¢g—(m+1) <4

in this case, so a7 — a3 = 4,1. e, a3 = m + 1,
ar =ag+1=a5+2=a4+3 =a3+4 = Tq,
m =T(q— 1)+ 2, and a9 = 0. Since a7 — a; > m,

ap <ar—(m+1)<(m+5)—(m+1) <4,

thatis, 1 < ay < 4, then ajas € E(H).

If a; = 1, then the remainder 7(q — 1) vertices
[2,m]\ {az2} in H colored ¢ — 1 colors by Claim 1,
such that each color colored seven vertices as

u(>2),u+1Lu+2,u+3,u+4,u+5u+6,

by Claim 2, so m + 6 and m + 7 would color «, but
they form a K1 3 with a3, a1, a contradiction.

If 2 < a; < 4, then the remainder 7(¢ — 1) ver-
tices [1,m]\ {a1,a2} in H colored ¢ — 1 colors, by
Claim 1, each color would color consecutive seven
vertices, which is impossible.

Case 3. h = 3.
We have a3 — ag < m,aq4 — ag > m, so

m+1<as <m+2,

and 0 < a9 < 1. By a7 — a; > m, we can obtain that
1 § al S 4.
(1) If ag = m + 2, then

ar=ag+1l=a5+2=a4+3="7q,

andm =T7(qg— 1)+ 2.

(1.1) Assume that 2 < a7 < 4, then ajaq €
E(H), so ajag, agaq ¢ E(H) by Claim 3, i. e., ag —
a1 <4,andag —az < 4,thusm-2 <az <m+ 1. If

m_2§a3§m7

then agas,asa; € E(H), so agag ¢ E(H), i. e.,
ag — a3 < 4, thus a3 > ag — 4 > m, moreover
a3 = m,and ajag € F (H), hence ag, a1, as, a7 form
a K1 3, a contradiction. Therefore,a3 = m + 1, and
ap = 1, then apas, ajag € E(H), so ayas ¢ E(H),
i.e,as—a; >m,anda; < as — (m+1) <2, thus
a; = 2. Hence the remainder 7(q — 1) vertices

{0} U3, m]\ {az}

in H colored ¢ — 1 colors, by Claim 1, each color col-
ored seven consecutive vertices, which is impossible.

(1.2) Assume that a; = 1, then ag = 0, and
3 <az <m. If6 <az < m,thenapas, aras, azar; €
E(H), a contradiction. If 4 < a3 < 5, then
asayg, azas, azag € F(H), a contradiction. Hence
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as = 3, and ag = 2, so the remainder 7(¢ — 1) ver-
tices [4,m + 1] in H colored ¢ — 1 colors such that
each color colored seven vertices as

u(>4),u+lLu+2,u+3,ut+4,u+5u+6

by Claim 1, then by Claim 2, m + 9 would color «
and form a K 3 with ay4, as, ag, a contradiction.

(2) Suppose that a4 = m + 1. Then ag = 0,
and ajay € E(H), so ajaz, asay ¢ E(H) by Claim
3,i. e, a0 — a1 < 4,and agy — ag < 4, thus m —
3<azg <m. Ifm-—3<az3 <m—1, then apas,
asa; € E(H), so ayas, asag ¢ E(H),i. e., a3 —
a1 < 4,and ag — az < 4, thus ag > ag — 4 >
m—1,andag =m—1,a1 > a3—4>m—5 >
4, hence a1 = 4, and a1, a4, a5, ag induce a K 3, a
contradiction. Therefore, a3 = m, and agag, ajag €
E (H), so asas,aza; ¢ E(H), that is, a; — a3 = 4,
and then a; = m + 4, ag = m + 3,a5 = m + 2,
and m — 4 < ag < m — 1. Moreover, agas, asay €
E(H), SO aiag, az0aq ¢ E(H), 1. €., g — a2 = 4,
and as — a1 < 4, hence as = m — 1, and a1 = 4, thus
a7 — a1 = m which contradicts Claim 2.

Case 4. h = 4.

We have ay — ag < m, and a5 — ag > m, SO
m+1<as;<m+3,and 0 < gg < 2.

Assume that ay —ag = 4. If ag = 2, then a1 = 3,
as = 4, a3 = 5 and a4 = 6, S0 ajas, asas, azas €
E (H), a contradiction. If ag = 1, then a1 = 2, ay =
3,a3 = 4 and aq = 5, so asas, azas, agas € E (H),
a contradiction. If ag = 0, then a1 = 1, as = 2,
as = 3, ag = 4,thus agas, asas, asas € E (H) when
m+1<as <m-+2,s0a5 = m+3,as = m—+4, and
a7 = m + 5. The remainder at least 7(¢ — 1) vertices
[5, m + 2] in H are colored g — 1 colors such that each
color colored seven vertices as

w(>5),u+1,u+2,u+3,u+4,u+5u-+6,

by Claim 1, hence m + 10 would color a by Claim 2
and be adjacent to as, ag, a7, a contradiction.
Therefore, 5 < aqy — ag < m, so agay € FE (H),
then, by Claim 3, agaz, asay ¢ E(H),i. e.,az—ag <
4,and ag —ao < 4,thus b5 < ay —ag < 8.
(HhIfag —ap = H5,then b < ay < 7, s0 agay €
E (H), thus aqa¢ ¢ E (H),i. e., a6 — ag < 4, and

11<m+2<ag<1l.

Hence m = 9, ag = 11, a5 = 10, a4 = 7,and ag = 2,
so apag € E (H) which contradicts Claim 2.

) If ag —ag = 6, then ag — ag > m + 2 by
as — ag > m, SO

5<m—4<(ag—ag) — (ag — ap)
=ag— a4 < ay—ag <m,
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Thus ag, a4, ag, a7 induce a K 3, a contradiction.
B3 Ifas—ag = 7,then3 < ag—as < 4, a7—ag >
m + 3 by as — ag > m, thus

5<m—4<(ay —ag) — (as — ap)
=a7 — a4 <M.

Hence aqa; € E(H), so ajayq,aqa¢ ¢ E (H), that is,
ag —ag < 4,and 3 < ag — a1 < 4, then

11<m+2<ag—ag
= (ag — aq) + (ag — ap) < 11.

Therefore,ag — ag = 11, m =9, a5 — ag = 10, a4 —
a1 =4, and ag — ao = 3, so aias, aiag, a2as, A20g €
E (H),i. e, a1, az, as,as form a 4-cycle, a contradic-
tion.

@ Ifag—ag = 8, thenag—as = as —ag = 4, so
araq € E(H),thus agay ¢ E(H),i.e.,a;—aq < 4,
hence a7 — ag < 8, and agas, asag, azar € E(H), a
contradiction, too.

Case 5. h = 5.

We have a5 — a9 < m, and ag — ag > m,
then apas € FE (H), so apas,ajaq,azas ¢ F(H)
by Claim 3,i.e.,3 < as —ag <4,a4 —a; <4, and
3 <as—as <4, hence 2 < ag — apg < 3, moreover,
S5<as—ag<7,4<as—ap<6,1<a;—ay<2,
and

m+1<ag<m+4.

(1) If ag =m—+1,thenag = 0. Hence 1 < a1 <
2,2 < a9 <3,and 3 < ag < 4, s0 ajag,a204, a3ag €
E(H), a contradiction.

(2) Assume thatag = m+2,then0 < a9 < 1. If
ag=0,then3 < a3 <4,4<ay <6,and 2 < ayg <
3, s0 agag, asag, asas € E(H), a contradiction. If
apg=1,then2 < a1 <3,3<as <4,and4 < az <
5, 80 ayag, azag, asag € E (H), a contradiction.

(3) Assume that ag = m + 3, then 0 < qp < 2.
If ag = 0, then 5 < a5 < 7, so asag, asar € E(H),
thus ag, as, ag, a7 induce a K 3, a contradiction. If
ap = 1,then 4 < a3 < 5,3 < ay < 4,and 5 <
ay < 7, then asag, asag, agas € E(H); if ag = 2,
then3 < a1 < 4,4 <ag <5,and 5 < ag < 6, so
ayag, a2a¢, asag € E(H), a contradiction, too.

(4) Assume that ag = m + 4, then ay = m + 5,
and 0 < ag <3.If0<ag <1,thenb < a5 <8, and
asag, asar € B (H), so ag, as, ag, a7 form a K1,3, a
contradiction. If ag = 2, then4 < a9 < 5,5 < ag <
6, and 6 < ayq < 8, S0 agag, asag, agas € E(H), a
contradiction. Hence ag = 3,5 < a9 < ag < 7,
and 7 < a4 <9, then agar,agar,asar € E(H), a
contradiction, too.

Therefore, we have

m="7(qg—1)+1,
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and thus Claim 6 holds.

Claim 7: a4 < 4, thatis,agp =0,a1 = 1, ay = 2,
az = 3, and a4 = 4.

Subclaim 7.1 a4 — ag = 4.
Otherwise, aq —ag > 4. We shall get a contradic-
tion according to the related positions of a4 and ag.

Case 1. a4 — ag > m.

There is 1 < h < 4, such that a;, — a9 < m, and
ap+1 — ap > m. By Claim 2, it is easy to see that
2< h<3.

(1) Suppose that h = 2, then as — ag < m,
and a3 —ag > m,som+1 < a3 < m-+ 2. By
a7y —ai; >m,wehave 1 <a; <5.

(1.1) Assume that ag = m + 1, then ¢g = 0. If
1 < a; < 4, then ajas € F (H), and thus agas ¢
E(H) or asa; ¢ E(H). If agas ¢ E(H), then
ag —as < 4,1. e, m—3 < as < m, SO apas,
agag, asay; € E(H) whenm — 2 < as < m — 1,
and agaz, agay,azas € E(H) when az = m — 3,
a contradiction. Hence as = m, so agas, asa; €
FE (H), thus ajas, asag ¢ FE (H), i.e,ag —as =4
and 4 < m—4 < as —4 < a; < 4. Moreover,
m=28,a1 =4, a5 =m-+4,a5 =m-+3, a4 =
m+2, and ajaq, ajas, a1a¢ € F (H), acontradiction.
Therefore, azas € E (H), then agay ¢ E (H), i. e.,
a7 —az3 =4,andag —as > 5,502 < ays < m —4,
ar = m+5a5 = m+4,a5 = m+3,and aqg =
m+ 2. If 3 < ay < m — 4, then as, as, a4, as induce
a K1 3, a contradiction. Hence as = 2, a; = 1, and
asas € E(H), so the remainder 7(q — 1) vertices
[3, m]U{m + 6} in H colored ¢ — 1 colors. By Claim
5, there is some color 3 colored seven vertices

3=hyg < hy <hy <hg<hy<hs<hg=m+46,

but hs, hy, hs are all adjacent to m+6 since 6 < hg <
h4 < hs < m, a contradiction.

Therefore, a1 = 5, and a; = m + 6, then
apai,aias,aia¢ € E (H), a contradiction, too.

(1.2) Assume that ag = m+ 2, thenagy = m+3,
as =m—+4,a6 =m+5,and ay = m + 6.

(1.2.DIf 4 < a7 < b, then ajas,a1aq,a1a5 €
E (H), a contradiction.

(1.2.2) If a1 = 3, then ajaz,a1a4 € E(H),
then ajay ¢ F(H),i. e, 4 < ay < 7. We have
agas, azaq, azas € F(H) when 4 < ap < 5, and
asas, asag, asar € E(H) when 6 < ay < 7, a con-
tradiction.

(1.2.3) If a3y = 2, then ajas € E(H). For
ap = 0, the remainder 7(q — 1) vertices {1} U
[3,m + 1]\ {az2} in H colored ¢ — 1 colors such
that each color colored seven consecutive vertices by
Claim 1, which is impossible. For ag = 1, we have
3 < ay < m + 1, and agas, asag,aza5 € E(H)
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when 4 < ag < m — 3, apag, agag, aza; € E(H)
when m — 2 < ao < m, and agae,aias,asay €
E(H) when as = m + 1, hence ap = 3, then
ajas,aszas € E (H), and the remainder 7(q — 1) ver-
tices {0} U [4, m + 1] in H colored g — 1 colors, such
that each color colored seven consecutive vertices ex-
cept 3 colored seven vertices

O<hi<hy<hg<hsg<hs<m+1
by Claim 5, but hy, h3, hy are all adjacent to O since
5<hyo<hg<hs<m-—1,

a contradiction.

(1.2.4) If a1 = 1, then ag = 0, thus the remainder
7(q¢ — 1) vertices [2,m + 1] \ {a2} in H colored g — 1
colors such that each color colored seven vertices as

u(>2),u+1l,u+2,u+3,u+4,u+5u+6,

by Claim 1, so m + 7 and m + 8 would color o and be
adjacent to ag, so azag ¢ E (H),i.e.,m—2 < ay <
m+ 1. If m — 2 < as < m, then agas, aias, asag €
E (H). Hence az = m + 1, so m + 8 is adjacent to
a9, ag, a4, a contradiction, too.

(2) Suppose that h = 3, then a3 — ap < m, and
ag—ag>m,som—+1<ag <m+ 3.

If aja; € E(H), then a; — ag > 5, s0 a7 =
m+6,a4 =m+1,andag = 0. By ay —a; > m, we
have 1 < a1 < 5. If a1 = 5, then agpay, aras, arag €
E (H), acontradiction. Hence 1 < a1 < 4,s0aja4 €
E (H), and then asay ¢ E (H), i. e., as — az < 4,
thusm—3<ay<m-—1.Form—2<ay <m-—1,
apasg, apas, asar, aza; € E(H), i. e., ag,a2,ar,as
form a 4-cycle, a contradiction. For as = m — 3,
apasy, azas, asag € E(H), a contradiction. There-
fore, aqa; ¢ E (H), thatis, a; — ag < 4.

(2.1) Assume that a4y = m + 1, then ag = 0,
m+4<ar<m+5andl < a; <4,s0a1a4 €
E (H), and thus asay ¢ E(H) by Claim 3, i. e.,
a4 —az < 4,hencem — 3 < ag <m.

211 Ifm-—-—3 < a3 < m — 2, then
apas, asag, asay € E (H), a contradiction.

(2.1.2) If a3 = m — 1, then apag, asa; € E(H),
so ajag,azag ¢ E(H),i. e., a3 —a; < 4, and
ag — a3 < 4, hence ag = m + 3, a5 = m + 2,
3<m-—5 < a <4, and ay,ay,as,ag induce a
K 3, a contradiction.

(2.1.3) If az = m, then apas € FE (H), so agas ¢
E(H),i. e., a3 —az < 4. If agzay € E(H), then
a; = m+ 5, and aya3 ¢ E(H),i. e, a1 > m — 4,
so as > m — 3, and ag, ag, ar, a3 induce a 4-cycle, a
contradiction. Therefore, asar ¢ E (H), a7 = m+4,
ag =m-+3,a5 = m+2,and 1 < a1 < 3, thus,
ayas,aiaq,a1a5 € E(H) when 2 < a; < 3, then
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a; = 1,s0 a1a3,a1a4 € E(H), and a1ay ¢ E (H),
thatis, 4 < m —4 < ay < a1 +4 < 5, hence
asas, asag, asar € E (H), a contradiction.

(2.2) Suppose that ay = m + 2, then m + 5 <
ar <m+6,0<ayg<1l,and1 < a; <5.

(2.2.1) Assume that 2 < a1 < 5, then ajaq €
E(H),soasay ¢ E(H),i. e, ay — a3 < 4, and
m—2<az<m-+1.

22.1.1) If m — 2 < ag < m — 1, then agas,
asag, asay € E (H), a contradiction.

(2.2.1.2) If a3 = m, then apas, asay € E (H), so
ajasz, asag ¢ FE (H), 1. e,ag—as < 4, and az—ay; <
4,thusag = m+4,a5 =m+3,4<m—4<a; <5,
and a1, a4, as, ag induce a K1 3, a contradiction.

(2.2.1.3) Ifag = m+1,thenag = 1, and agas €
E(H),soasas ¢ E(H),i. e, m —3 < ag < m,
thus, agaz, agag, asay € E(H) whenm — 2 < ag <
m—1, and agay, azas, asas € E (H) whenag = m—
3, a contradiction. Hence as = m, so agas, asay €
E (H), then ajas,asas ¢ E (H),1i. e., ag — ag = 4,
and as — a1 < 4,thusag = m + 4, a5 = m + 3,
4 < m-—4 < ap <5, and ay,aq,as,ag induce a
K1 3, a contradiction, too.

(2.2.2) Assume that a; = 1, then ag = 0, and
3 <az <m.

(2.2.2.1) If 6 < ag < m, then agas, aias, azar €
E (H), a contradiction.

(2.2.2.2) If a3 = 5, then agas, azay, azas €
E (H), a contradiction.

(2.2.2.3) If ag = 4, then agaq,azas € E (H), SO
asag ¢ F (H), thus a; = m+6,a6 = m+5,and 2 <
as < 3, hence as = 3, a5 = m + 3, and as, as, a4, as
form a 4-cycle when asas € E (H), a contradiction.
Therefore, asas ¢ E (H). If ag = 3, then a5 =
m+-4, and the remainder 7(g—1) vertices [5, m + 1]U
{2,m + 3} in H colored ¢ — 1 colors, such that each
color colored seven consecutive vertices, except some
color 3 colored vertices

2<hi<hy<hg<hs<hs<m+3

by Claim 5, so 3 would color m + 8 which is adjacent
to m + 3, hy, and hs, a contradiction. Hence as = 2,
and m + 3 < as < m+ 4. If as = m + 4, then the
remainder 7(qg — 1) vertices [5,m + 1] U {3, m + 3}
in H colored ¢ — 1 colors, such that each color col-
ored seven consecutive vertices by Claim 1, which is
impossible. Hence a5 = m + 3, then the remainder
7(q—1) vertices [5,m + 1]U{3, m + 4} in H colored
q—1 colors such that each color colored seven consec-
utive vertices, except some color 3 colored vertices

3< hi <hy<hg<hg<hs<m+44,

but b1, ha, hs are all adjacent to m+4 since 5 < hy <
ho < hs < m — 1, a contradiction.
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(2.2.2.4) Assume that a3 = 3, then as = 2, so
agay,azay € E(H)If a; = m+5, then ag = m+4,
and a; = m + 3, so the remainder 7(q — 1) vertices
[4,m + 1]U{m + 6} in H colored g — 1 colors, such
that each color colored seven consecutive vertices ex-
cept some color 3 colored vertices

4<hy<hy<hg<hy<hs;<m+6

by Claim 5, but hs, hy, hs are all adjacent to m + 6
since

7§h3<h4<h5§m+1,

a contradiction. Hence a; = m + 6. If ag = m +
5, then the remainder 7(q — 1) vertices [4,m + 1] U
{m+3}or[4,m+1]U{m+4}in H colored ¢ — 1
colors, such that each color colored seven consecutive
vertices by Claim 1, which is impossible. Therefore,
ag = m+4, and a5 = m+3, then the remainder 7(q—
1) vertices [4,m + 1] U {m + 5} in H colored ¢ — 1
colors, such that each color colored seven consecutive
vertices except some color 3 colored vertices

4<hi<hy<hgy<hg<hs<m+5

by Claim 5, but hy, ho, hs are all adjacent to m + 5
since

5§h1<h2<h3§m—1,

a contradiction, too.

(2.3) Assume that ay = m+ 3, then a5 = m +4,
ag=m-+5a;=m+6,and 0 < qp < 2.

2.3.1) If 6 < a3 < m — 1, then asas, asag,
asay € E (H), a contradiction.

(2.3.2) If a3 = m, then agas, asag, azar €
E (H), a contradiction.

233) Ifags = m+ 1,then1 < a9 < 2, so
apas,azar; € E(H), thus ajas,azas ¢ E (H), so
a3 —ay1 <4anday —az3 =5, hence 9 < m+1<
ar —ay < 9,thusay; —a; = 9,1. e.,, a; = 5, and
ajaq,aras,a1a6 € E (H), a contradiction.

(2.3.4) Assume that ag = m+2, thenag = 2, and
3 < aj; < 5,s0apas,a1a3 € E(H), hence agas ¢
EH)ie,m—2<ay<m+1 Ifag =m—2,
then asay, asas, azag € F (H), a contradiction. If
m—1 < ay < m + 1, then agpaq, asa; € E(H),
SO agag ¢ E(H), 1. €., g — agy = 4, and as —
m + 1, thus, ajas € E(H) and ay, ag, a1, as induce
a 4-cycle when 3 < a; <4, and ay, as, a4, a5 induce
a K1 3 when a1 = 5, a contradiction.

(2.3.5) If a3 = b5, then asaq,asas,a3ag €
E (H), a contradiction.

(2.3.6) Ifag =4and ag = 1, then a1 = 2, ao =
3, and agay, aszas, azay € E (H), so the remainder
7(q¢ — 1) vertices {0} U [5, m + 2] in H colored ¢ — 1
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colors, such that each color colored seven consecutive
vertices, except some color 3 colored vertices

O<hi<hy<hg<hs<hs<m+2

by Claim 5, but hy, ho, hs are all adjacent to O since
5 < h1 < hy < hg < m — 1, a contradiction. If
ag = 4 and ag = 0, then as is 2 or 3 when a1 =
1, and in this case the remainder 7(¢ — 1) vertices
{2}U[5,m + 2] or {3}U[5, m + 2] in H colored g—1
colors, such that each color colored seven consecutive
vertices which is impossible, hence a; = 2, as = 3,
asaq,azay € E (H), and in this case the remainder
7(q— 1) vertices {1} U [5,m + 2] in H colored ¢ — 1
colors, such that each color colored seven consecutive
vertices, except some color 3 colored vertices

1< hy<hy<hg<hgy<hs<m+42
by Claim 5, but ho, hs, hy are all adjacent to 1 since
6§h2<h3<h4§m,

a contradiction.

237 Ifaz = 3,thena; = 1, as = 2,and
ap = 0, so the remainder 7(q — 1) vertices [4, m + 2]
in H colored g — 1 colors, such that each color colored
seven consecutive vertices as

u(>4),u+Lu+2,u+3u+4,u+5u+6,

thus m + 10 would color « and be adjacent to ay, as,
ag, a contradiction, too.

Case2.5 < aqy —agp <m.

Since apay € E (H), we have agag, azaq, aras ¢
E (H) by Claim 3, 1. e., a2 — ag < 4, ag — ag < 4,
and ag —a; <4,thenb <ag—agp <8 Byay—a; >
m + 1, we have a; — ap > m + 2. In the following
we shall get a contradiction according to the related
positions of ag and ag4.

It is obvious that

ag — ag = (ag — ag) — (ag — agp)
>m+1—5>m—4.

(1) Suppose that ay — ag = 5.

(1.1) Assume that ay = 5, then ¢¢ = 0. If
m+2 < ar < m + 5, then agqay € E(H), so
agag ¢ E(H),i. e, 4 < m—4 < ag—ag <
4, then m = 8, ag = 9, and ajag, asag, azag €
E (H), a contradiction. Hence a; = m + 6, so
aag, azag, azag € FE(H) if ag = m + 1, a con-
tradiction. Therefore, m + 2 < ag < m + 5, then
asag € E(H), so agas ¢ E(H),i.e.,6 <as <9,
we have ajas, asas,azas € E(H) when as = 9,
apas, aias, asay € E(H) when 7 < as < 8, thus we
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have a5 = 6, and apas, asay € E (H), which induces
asag ¢ E(H),i. e, 10 < m+ 2 < ag < 10, that
is, ag = 10, m = 8,and agag, asag, asa6 € E(H), a
contradiction.

(1.2) If ay > 6, then agag ¢ E (H) (otherwise,
ag, a4, ae, a7 induce a Kq3),i.e.,4 <m—4 < ag —
ay < 4, thusm = 8, ag — ag = 4, 50 agar; € E(H),
and ag — a1 < 4, hence ajag, azag, azas € E(H), a
contradiction, too.

(2) Suppose that ay — ag = 6, then ay — aq =
(a7 —ap) — (ag — ap) > m — 4.

(2.1) Assume that a7 — aq > m — 3, then aqay €
E (H), so aja4,a4a6 ¢ E(H), i. e, ay —ay < 4,
ag — Q4 S 4, andal—ao = (a4—a0)—(a4—a1) Z 2,
thus 3 < ao —ag < 4. Hence 5 < ag — a1 < 8, and
m—3 < (ag — ag) — (az — ag) = ag — a2 = (ag —
as) + (as — az) < 8, s0 ajag,a2a6 € E(H), then
asag, agar ¢ E(H),i. e, a6 — a3 < 4, a7 — ag < 4,
thus4 < m—-—4<ag—as—1 < ag —az < 4.
Therefore, m = 8, and ag — ag = 4. Moreover,

o< ar—ag <ay—as
= (a7 — ag) + (ag — a3z) < 8,

and
m—3 < (ag — ag) — (ag — as)
=a3—ag<aqg—ay <8,

SO apas, apgty4, azary, a4ay € E(H), 1.

a4, a7 form a 4-cycle, a contradiction.
(2.2) Assume that a7 — a4 = m — 4. Then

€., ap, as,

a7 —ap = (a7 —aq) + (ag — ap) = m+ 2,
and ag—ag = m+1,s0a1—ag = 1,ar—a; = m+1,
ay —a; = (a7 —ay) — (a7 — aq) =5,

and
ag — a1 = (ag — ap) — (a1 — ap) = m,

thus ajaq, aras,a1a6 € E (H), a contradiction.
(3) Suppose that ay — ag = 7, then

a7 —ayg = (a7 — ag) — (ag — ag) > m — 5.
(3.1) Assume that
a7 —ag > m—3.

Then aqa; € E(H), so ajayg,aqa6 ¢ E(H), i. e.,
ag — a1 <4, and ag — aq < 4. Hence

ap —ap = (ag — ap) — (a4 — a1) > 3,
and then as — ag = 4, and a4 — ao = 3. Thus

D ag —ag < ag—ay; <8,
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SO ajag,aza¢ € E(H), and then asag,aga; ¢
E(H),i.e.,as —a3z < 4,and ay — ag < 4, hence

m—3 < (ag —ag) — (ag — as)
:ag—a0<a4—a0:7,

which induces m = 8, and
5<ar—aqg<ar—az=ar—ag+as—az <3,

therefore ag, as, a4, ay form a 4-cycle, a contradic-
tion.
(3.2) Assume that

ar —ag =m — 4,
then
a7—a0:(a7—a4)+(a4—ao):m+3,

and
m+1<ar—a <m+2,

)
5< (a7 —a1) — (a7 —ag) = ag —ay <6,
and a1a4 € E (H), thus asar ¢ E(H), 1. e.,
ar —ag =m—4 <4,

that is, a7 — a4 = 4, and m = 8. Clearly, 2 < ag —
ag < 3,and 1 < as — aq4 < 2 in this case.

3.2.1) If agy — a; = 5, then ajay,aias,ai1ag €
E (H), a contradiction.

(3.22) If agy — a1 = 6, thena; —ayg = 1, so
we have ajas € E (H), thus as — ag = 2 (otherwise,
as —aq = 1, and ag, a4, a1, as induce a 4-cycle), and
a7 — g = Qg — A5 = 1, hence ap, a2, as, a4 induce
a K13 when ag — as = 2, and a2, as, ag, ar induce a
K13 when 3 < ay — as < 4, a contradiction.

(3.3) Assume that

a7 —ag =m — 5.
Then
a7 —ag = (a7 — a4) + (a4 — ag) =m +2,
ag—apg=m-+1,anda; —ag =1, so

as — a1 = (aq — ag) — (a1 — ag) = 6,
ag — a1 = (as — ap) — (a1 — ag) =m,

and ajayq, ajas, arag € E (H), a contradiction,too.

(4) Suppose that ay—ay = 8, then apay € E(H),
and ay — a; = 4 by Claim 3, so ajay € E (H),
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and thus aqa; ¢ F(H),i. e., a; —ag < 4, hence
asas, azag, asar € E (H), a contradiction.

By two cases above, we have ay — ag < 4, 1. e,
aq — ag = 4. Hence Subclaim 7. 1 holds.

Subclaim 7.2 ag = 0.

Otherwise, we have ag > 1, and 2 < a; < 5 by
ay —aip > m.

(1) If ay = 5,thenag =4,a0 =6,a3 = 7,a4 =
8,a7 = m—+6, and ag = m+5, S0 ajag, asag, azag €
E (H), a contradiction.

2) If ag = 4,thenag = 3,a2 =5,a3 =6, ag =
7,and m + 4 < ag < m + 5,50 asag, azag, a4ag €
E(H), a contradiction.

(3) Ifa1 :3,(10 :2,a2 :4,(13 :5,a4 :6,
then m + 3 < ag < m + 5, so asag, asa6 € E(H),
thus asag, asag ¢ F (H),i. e., a6 — a2 > m+ 1, and
ag—as < 4, hence ag = m+5, a7 = m+6, and a5 >
m + 1. Clearly, aya7y € E(H), so asas ¢ E(H), i.
e, 9 <m+1 < a5 <10, thus agas, aras, asas €
E (H), a contradiction.

(4) Suppose that a; = 2, then ag = 1, az = 3,
az = 4, ay4 = 5,

m+2<ag <m-+25,

and
m+3 <ar <m+6,

so asag € E (H), and thus agas ¢ E (H) or asag ¢
E (H).

(4.1) Assume that agas ¢ E (H), then as —ayg <
4,i. e.,6§a5 §9

“4.1.1) If 8 < as <9, then agas, ajas, asas €
E (H), a contradiction.

(4.1.2) If a5 = 7, then apas,a1a5 € E (H), so
asay Q:L E (H) s 1. c.,

11<m+3<a; <11,

hence ay = 11,m = 8 and asar,asa7,aga; €
E (H), a contradiction.

4.1.3) If a5 = 6,then agas, asar; € E(H), SO
asae §é E (H), 1. c.,

10<m+2 < ag <10,

hence ag = 10, m = 8, and ajag, asag, azag €
E (H), a contradiction, too.

(4.2) Assume that aga; € FE(H), and asag ¢
E(H), then azas € E(H), ag — as < 4, so asas g
E(H),i.e.,a5 >m+4,hence as = m+4 = ag —
1 = a7 —2. Therefore, the remainder 7(qg — 1) vertices
{0} U [6,m + 3] in H colored g — 1 colors, such that
each color colored seven consecutive vertices, except
some color 3 colored vertices

0< hi <hy<hsg<hg<hs<m+3,
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but hy, ho, h3 are all adjacent to O since
6 < hy < hgs < hg <m,

a contradiction, too.

Therefore, ag = 0, and then Subclaim 7.2 is
proved.

In a word, we have a4 < 4, and Claim 7 holds.

Claim 8: ag > 7 (q — 1) +6, thatis, ag = 7q—1,
and a7y = 7q.

Ifag < 7q — 2,1. e., ag < m + 4, then agag €
E(H), SO agas ¢ E(H) or asaeg ¢ E(H)

(1) Suppose that agas ¢ E (H), then 5 < a5 <
8.

(1.1) If7 < as < 8, then agas, ajas, asas €
E (H), a contradiction.

(1.2) If a5 = 6, then agas,aja5 € E(H), so
asa; ¢ E(H), and 10 < m + 2 < ay; < 10, thus
a; = 10, m = 8, ag = 9, and asay,aszay, aga7 €
E (H), a contradiction.

(1.3) Assume that a5 = 5, then apas € E (H).
If m+2 < a; < m+5, then asay € E(H), so
asag ¢ E(H),i. e, 9 < m+1 < ag < 9, thus
ag = 9, m = 8, and ajag, azag,asag € E(H), a
contradiction. Hence a7 = m + 6, and then the re-
mainder 7(q — 1) vertices [6,m + 5] \ {ag} in H col-
ored ¢ — 1 colors, such that each color colored seven
consecutive vertices by Claim 1, which is impossible
sincem + 1 < ag < m+ 4.

(2) Suppose that ajas € E(H), and azag ¢
E(H). Then asas € E(H), so a7 — a; < 4,
ag — a3 > m~+ 1, and a5 — as > m + 1, hence
ag = m+4and a5 = m + 3. If a; = m + 6, then
the remainder 7(q — 1) vertices [5,m + 2] U{m + 5}
in H colored ¢ — 1 colors, such that each color col-
ored seven consecutive vertices by Claim 1, which is
impossible. Hence a; = m + 5, and the remainder
7(q — 1) vertices [5,m + 2] U {m + 6} in H colored
q — 1 colors, such that each color colored seven con-
secutive vertices, except some color /3 colored vertices

5<hy <hy<hg<hy<hs; <m+6,
but A1, he, hs are all adjacent to m + 6 since
6§h1<h2<h3§m,

a contradiction, too.
Therefore, we have ag = 7¢ — 1, and a7 = 7q.

Claim 9: a5 = 5oras = m + 4.
Assume that

6§a5§m+3

If
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then apas, a1as, asay € E (H), a contradiction. If
m+1<as <m+2,

then asas, asas,asas € FE (H), a contradiction. If
as = m + 3, then the remainder 7(¢ — 1) vertices
[5,m + 2] U{m + 4} in H colored g — 1 colors, such
that each color colored seven consecutive vertices by
Claim 1, which is impossible. Hence Claim 9 holds.

Without loss of generality, suppose that a5 = 5.
Then the remainder 7(q — 1) vertices [6, m + 4] in H
colored g—1 colors, such that each color colored seven
consecutive vertices as (6 <)u,u + 1,---,u + 6 by
Claim 1, hence m + 11, m + 12 would color « and
induce a 4-cycle along with ag, a7, a contradiction,
too.

In a word, we have shown that

vla (G (Dmia)) > [] + 1.
Therefore, we obtain that
vla (G (Dmi4)) = [%] + 1.
O
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