The Vertex Linear Arboricity of Integer Distance Graph $G\left(D_{m, 1,4}\right)$

LIANCUI ZUO
College of
Mathematical Science,
Tianjin Normal University,
Tianjin, 300387,
CHINA
lczuo@mail.tjnu.edu.cn

CHUNHONG SHANG*
College of
Mathematical Science,
Tianjin Normal University,
Tianjin, 300387, CHINA
shangchunhong@eyou.com

YANYUN NIU
College of
Mathematical Science,
Tianjin Normal University,
Tianjin, 300387,
CHINA
$1042886859 @ q q . c o m$

Abstract

An integer distance graph is a graph $G(D)$ with the set Z of all integers as vertex set and two vertices $u, v \in Z$ are adjacent if and only if $|u-v| \in D$, where the distance set D is a subset of positive integers. A k-vertex coloring of a graph G is a mapping f from $V(G)$ to $[0, k-1]$. A path k-vertex coloring of a graph G is a k-vertex coloring such that every connected component is a path in the induced subgraph of $V_{i}(1 \leq i \leq k)$, where the vertex set V_{i} is the subset of vertices assigned color i. The vertex linear arboricity of a graph G is the minimum positive integer k such that G has a path k-vertex coloring. In this paper, we studied the vertex linear arboricity of the integer distance graph $G\left(D_{m, 1,4}\right)$, where $D_{m, 1,4}=[1, m] \backslash[1,4]$, and proved that $v l a\left(G\left(D_{m, 1,4}\right)\right)=\left\lceil\frac{m}{7}\right\rceil+1$ for every integer $m \geq 6$.

Key-Words: Integer distance graph; Vertex linear arboricity; Path coloring

1 Introduction

In this paper, R and Z denote the sets of all real numbers and all integers, respectively. For $x \in R$, let $\lfloor x\rfloor$ denote the greatest integer not exceeding x, and $\lceil x\rceil$ denote the least integer not less than x. Let $[m, n]=\{m, \cdots, n\}$ denote the set of all integers from m to n where $m \leq n$ and $[m, n]=\emptyset$ if $m>n$. $|S|$ denotes the cardinality of a set S and $|S|=+\infty$ means that S is an infinite set.

In recent years, many parameters and graph classes were studied. For examples, He et al. in [7] obtained the linear k-arboricity of the Mycielski graph $M\left(K_{n}\right)$, Lai et al.in [9] gave a survey for the more recent developments of the research on supereulerian graphs and the related problems, and Jiang and Zhang in [8] studied Randomly M_{t}-decomposable multigraphs and M_{2}-equipackable multigraphs.

Coloring of graphs is one of the most fascinating and well-studied topic in graph theory. The problem can be traced back to the Four Color Conjecture. It was motivated by application problems as the frequency assignment problem (e.g., $L(2,1)$-labeling and the multi-level distance labeling), the control of traffic signals (e.g., circular coloring) and other problems from wide range of industrial and technology areas. A vertex coloring can be viewed as a function from V to Z. More precisely, a vertex k-coloring of

[^0]a graph G is a mapping f from $V(G)$ to $[1, k]$. Given a vertex k-coloring, let V_{i} denote the set of all vertices of G which colored with i, and $\left\langle V_{i}\right\rangle$ denote the subgraph induced by V_{i} in G. If V_{i} is an independent set for every $1 \leq i \leq k$, then f is called a proper k-coloring. The chromatic number $\chi(G)$ of a graph G is the minimum integer k for which G has a proper k-coloring. If V_{i} induces a subgraph whose connected components are paths, then f is called a path k-coloring. The vertex linear arboricity of a graph G, denoted by $v l a(G)$, is the minimum number k such that G has a path k-coloring. Clearly, $\chi(G) \geq v l a(G)$ for any graph G.

Matsumoto [11] proved that for a finite graph G,

$$
v l a(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil ;
$$

moreover, if $\Delta(G)$ is even, then

$$
v l a(G)=\left\lceil\frac{\Delta(G)+1}{2}\right\rceil
$$

if and only if G is a complete graph of order $\Delta(G)+$ 1 or a cycle. Goddard [5] and Poh [12] proved that $v l a(G) \leq 3$ for a planar graph G. Akiyama et al. [1] proved that $v l a(G) \leq 2$ if G is an outerplanar graph.

Let S be a subset of real numbers and D a set of positive real numbers. Then distance graph $G(S, D)$ has the vertex set S and two real numbers x and y are adjacent if and only if $|x-y| \in D$, where the set
D is called the distance set. In particular, if all elements of D are positive integers and $S=Z$, then the graph $G(Z, D)$, or $G(D)$ in short, is called integer distance graph. The distance graphs were introduced by Eggleton et al.[3] in 1985 to study the chromatic number. They proved that $\chi(G(R, D))=n+2$, where D is an interval between 1 and δ, and n satisfies $1 \leq n<$ $\delta \leq n+1$. They also partially determined the values of $\chi\left(G\left(D_{m, k}\right)\right)$, where $D_{m, k}=[1, m] \backslash\{k\}$. The complete solution to $\chi\left(G\left(D_{m, k}\right)\right)$ is provided by Chang et al.in [2]. Many peoples discussed the chromatic number of integer distance graph $G(D)$. More results on the chromatic number of integer distance graphs, see [$3,4,6,10,13$] and [14]. In [16] and [17], it is considered that vertex linear arboricity of the real distance graphs. In [15], it is studied that the vertex linear arboricity of $G\left(D_{m, k}\right)$ where $D_{m, k}=[1, m] \backslash\{k\}$. In [18], it is obtained that $\operatorname{vla}\left(G\left(D_{m, 1,3}\right)\right)=\left\lceil\frac{m}{6}\right\rceil+1$.

Now the integer distance graph is applied widely to gene sequence, sequential series, on-line computing and so on.

Let $D_{m, 1,4}=[1, m] \backslash\{1,2,3,4\}$. In this paper, we shall prove that

$$
\operatorname{vla}\left(G\left(D_{m, 1,4}\right)\right)=\left\lceil\frac{m}{7}\right\rceil+1
$$

for $m \geq 6$.

2 Main results

For $m=5, D_{5,1,4}=\{5\}$, so we have

$$
\operatorname{vla}\left(G\left(D_{5,1,4}\right)\right)=1
$$

For $6 \leq m \leq 7$, let $n=14 l+j, f(n)=0$ if $0 \leq$ $j<7$, and $f(n)=1$ if $7 \leq j<14$. Then f is a path coloring, and thus

$$
\operatorname{vla}\left(G\left(D_{m, 1,4}\right)\right) \leq 2
$$

Since vertices $0,5,10,15,20,25,30,24,18,12,6,0$ in $G\left(D_{m, 1,4}\right)$ induce a cycle, we obtained that

$$
\operatorname{vla}\left(G\left(D_{m, 1,4}\right)\right)=2
$$

Theorem 1. For any integer $m \geq 8$, we have

$$
\operatorname{vla}\left(G\left(D_{m, 1,4}\right)\right)=\left\lceil\frac{m}{7}\right\rceil+1 .
$$

Proof. At first we give a path coloring of $G\left(D_{m, 1,4}\right)$.
Let $f(n)=i$ for $n=7 i+j, 0 \leq j \leq 6,0 \leq i \leq$ $\left\lceil\frac{m}{7}\right\rceil$, and for any integer t, let

$$
f\left(7 t\left(\left\lceil\frac{m}{7}\right\rceil+1\right)+n\right)=f(n) .
$$

Then f is a path coloring, and

$$
\operatorname{vla}\left(G\left(D_{m, 1,4}\right)\right) \leq\left\lceil\frac{m}{7}\right\rceil+1
$$

In the following, we shall show that

$$
\operatorname{vla}\left(G\left(D_{m, 1,4}\right)\right) \geq\left\lceil\frac{m}{7}\right\rceil+1
$$

by contradiction approach.
Assume that the result is not right, that is,

$$
\operatorname{vla}\left(G\left(D_{m, 1,4}\right)\right) \leq\left\lceil\frac{m}{7}\right\rceil=q
$$

then $G\left(D_{m, 1,4}\right)$ has a path q-coloring f. Clearly, f is also a path q-coloring of the subgraph H induced by vertex subset $[0,7 q]$ of $G\left(D_{m, 1,4}\right)$. Note that $|V(H)|=7 q+1$. Hence there are at least eight vertices

$$
(0 \leq) a_{0}<a_{1}<\cdots<a_{7}(\leq 7 q)
$$

with the same color α.
Claim 1: If $a_{6}-a_{0} \leq m$, then

$$
\begin{aligned}
& a_{6}=a_{5}+1=a_{4}+2=a_{3}+3 \\
& =a_{2}+4=a_{1}+5=a_{0}+6 .
\end{aligned}
$$

Otherwise, there is some $0 \leq i \leq 5$ such that

$$
a_{i+1}-a_{i}>1,
$$

then $a_{0} a_{6}, a_{0} a_{5}, a_{0} a_{4} \in E(H)$ or $a_{0} a_{6}, a_{1} a_{6}$, $a_{2} a_{6} \in E(H)$, i. e., $a_{0}, a_{4}, a_{5}, a_{6}$ form a $K_{1,3}$, or $a_{0}, a_{1}, a_{2}, a_{6}$ form a $K_{1,3}$, a contradiction. Hence Claim 1 holds.

Claim 2: $\min \left\{a_{6}-a_{0}, a_{7}-a_{1}\right\}>m$.
Assume that $a_{6}-a_{0} \leq m$, then by Claim 1, we can obtain that

$$
\begin{aligned}
& a_{6}=a_{5}+1=a_{4}+2=a_{3}+3 \\
& =a_{2}+4=a_{1}+5=a_{0}+6,
\end{aligned}
$$

so $a_{0} a_{6}, a_{0} a_{5}, a_{1} a_{6} \in E(H)$, thus $a_{0} a_{7}, a_{6} a_{7} \notin$ $E(H)$. Therefore $a_{7}-a_{0}>m$, and $a_{7}-a_{6}=t \leq 4$ or $a_{7}-a_{6}>m$. If $a_{7}-a_{6}=t \leq 4$, then $a_{2} a_{7}, a_{3} a_{7}, a_{4} a_{7} \in E(H)$ when $3 \leq a_{7}-a_{6} \leq 4$, and $a_{0} a_{7}, a_{1} a_{7}, a_{2} a_{7} \in E(H)$ when $1 \leq a_{7}-a_{6} \leq 2$, a contradiction. Hence $a_{7}-a_{6}>m$, so $a_{7} \geq$ $a_{6}+m+1 \geq m+7>7 q$, a contradiction, too.

Therefore $a_{6}-a_{0}>m$. Similarly, $a_{7}-a_{1}>m$. Thus Claim 2 is proved.

By Claim 2, we have $m \leq 7 q-2$.
Claim 3: If $a_{i} a_{i+j} \in E(H)$ for some $j \geq 3$, then

$$
a_{i} a_{i+j-2}, a_{i+2} a_{i+j}, a_{i+1} a_{i+j-1} \notin E(H) .
$$

Otherwise, if $a_{i} a_{i+j-2} \in E(H)$, then
$5 \leq a_{i+j-2}-a_{i}<a_{i+j-1}-a_{i}<a_{i+j}-a_{i} \leq m$,
so $a_{i}, a_{i+j-2}, a_{i+j-1}, a_{i+j}$ form a $K_{1,3}$, a contradiction. Thus $a_{i} a_{i+j-2} \notin E(H)$. Similarly, $a_{i+2} a_{i+j}$ $\notin E(H)$. If $a_{i+1} a_{i+j-1} \in E(H)$, then a_{i}, a_{i+j-1}, a_{i+1}, a_{i+j} form a 4-cycle, a contradiction, too.

Claim 4: There are at most eight vertices in H with the same color.

Otherwise, assume that there are nine vertices

$$
(0 \leq) a_{0}<a_{1}<\cdots<a_{8}(\leq 7 q)
$$

with the same color α, then $a_{i+6}-a_{i}>m$ by Claim 2, so $a_{i} \in[i, i+3]$, and $a_{i+6} \in[m+i+1, m+i+4]$ where $i \in[0,2]$.
(1)If $a_{2}=5$, then $a_{8}=m+6, m=7(q-$ 1) +1 , and $a_{2} a_{7} \in E(H)$. Moreover, by Claim 3, $a_{2} a_{5}, a_{4} a_{7} \notin E(H)$, i. e., $3 \leq a_{5}-a_{2} \leq 4$, and $3 \leq a_{7}-a_{4} \leq 4$, so $8 \leq a_{5} \leq 9$, and $a_{4} \geq a_{7}-4 \geq$ $m-2$, thus $m=8,7 \leq a_{4} \leq 8$ and $10 \leq a_{7} \leq 12$. Hence $a_{3}, a_{4}, a_{5}, a_{8}$ form a $K_{1,3}$, a contradiction.
(2) If $a_{2}=4$, then we have $a_{8} \geq m+5, m=$ $7(q-1)+j, 1 \leq j \leq 2$, and $a_{2} a_{6} \in E(H)$. By Claim $3, a_{2} a_{4}, a_{4} a_{6} \notin E(H)$, so

$$
m-3 \leq a_{6}-a_{2} \leq 8
$$

and $6 \leq a_{4} \leq 8$, thus $m \in[8,9], 9 \leq a_{6} \leq 12$, and $m+5 \leq a_{8} \leq m+6$. If $a_{2} a_{7} \in E(H)$, then $a_{2} a_{5} \notin E(H)$, i. e., $a_{5}-a_{2} \leq 4$, and $7 \leq a_{5} \leq 8$, so $a_{5} a_{8}, a_{4} a_{8} \in E(H)$, thus $a_{3} a_{8} \notin E(H)$, hence $a_{3}=5, a_{8}=m+6$, and $m=8$. Moreover, $a_{3} a_{7} \in E(H)$, and then $a_{3} a_{6}, a_{4} a_{7} \notin E(H)$ (otherwise, $a_{2}, a_{6}, a_{3}, a_{7}$ form a cycle, or $a_{2}, a_{3}, a_{4}, a_{7}$ form a $K_{1,3}$), that is, $a_{6}=9, a_{7} \leq a_{4}+4 \leq 11$, thus $a_{1}, a_{2}, a_{6}, a_{8}$ form a $K_{1,3}$, a contradiction. Therefore $a_{2} a_{7} \notin E(H)$, i. e., $a_{7}=m+5, a_{8}=m+6$, then $m=8$ since $j=1$, and $a_{4} a_{7}, a_{4} a_{8} \in E(H)$, so $a_{3}=$ 5 (otherwise, $a_{3}, a_{7}, a_{4}, a_{8}$ form a 4 -cycle), and then $a_{5} \geq 9$ (otherwise, $a_{4}, a_{7}, a_{5}, a_{8}$ form a 4-cycle), thus $a_{2} a_{5}, a_{3} a_{6}, a_{3} a_{7} \in E(H)$, and $a_{3} a_{5} \notin E(H)$,that is, $a_{5}=9$, but $a_{2}, a_{5}, a_{8}, a_{4}, a_{7}, a_{3}, a_{6}$ form a 7 -cycle in this case, a contradiction, too.
(3)Assume that $a_{2}=3$. By Claim 2, it is easy to know that

$$
m=7(q-1)+j
$$

with $1 \leq j \leq 3$.
Suppose that $a_{2} a_{6} \in E(H)$, then, by Claim 3, $a_{2} a_{4}, a_{4} a_{6}, a_{3} a_{5} \notin E(H)$, so $m-2 \leq a_{6}-a_{2} \leq 8$, $a_{5}-a_{3} \leq 4$, and $5 \leq a_{4} \leq 7$, thus $m \in[8,10]$, $9 \leq a_{6} \leq 11$, and $m+4 \leq a_{8} \leq m+6$ by Claim 2. If $a_{2} a_{7} \in E(H)$, then $a_{2} a_{5} \notin E(H)$, i. e., $a_{5}-a_{2} \leq 4$ and $6 \leq a_{5} \leq 7$, so $a_{0} a_{5}, a_{5} a_{8} \in E(H)$, thus $a_{5}-a_{1}=4, a_{5}=6$, and $a_{7} \leq a_{5}+4=10$, hence $a_{7}=a_{6}+1=10$, that is, $m=8$, and $a_{2}, a_{3}, a_{4}, a_{7}$ form a $K_{1,3}$, a contradiction. Therefore, $a_{2} a_{7} \notin E(H)$, i. e., $a_{7} \geq m+4, a_{8} \geq m+5$,
thus $j \leq 2$, and $a_{4} a_{7} \in E(H)$, so $a_{3} a_{7} \notin E(H)$ or $a_{5} a_{7} \notin E(H)$, i. e., $a_{3}=4$ and $a_{7}=m+5$, or $a_{7}-a_{5} \leq 4$. In the former case, $a_{3} a_{6} \in E(H)$, $6 \leq a_{5} \leq 8$, so $a_{0}, a_{5}, a_{7}, a_{8}$ form a $K_{1,3}$, a contradiction. In the latter case, we may suppose that $a_{3} a_{7} \in E(H)$, then $a_{2} a_{5} \in E(H)$ (otherwise, $5 \leq$ $a_{5} \leq 7$, then $a_{7} \leq a_{5}+4 \leq 11$, which contradicts $a_{7} \geq m+4$), so $a_{5} a_{8}, a_{1} a_{6}, a_{0} a_{5} \notin E(H)$ (otherwise, $a_{1}, a_{2}, a_{5}, a_{8}$ form a $K_{1,3}$, or $a_{1}, a_{5}, a_{2}, a_{6}$ form a cycle, or $a_{0}, a_{1}, a_{2}, a_{5}$ form a $K_{1,3}$), then $a_{4} a_{8} \in E(H)$ (otherwise, $a_{4}=5$ and $a_{8}=m+6$, so $a_{3}=4$, and $a_{5} \leq 8$ which contradicts $a_{5} a_{8} \notin E(H)$), thus $a_{0} a_{4} \notin E(H)$ (otherwise, $a_{0}, a_{4}, a_{7}, a_{8}$ form a $K_{1,3}$), that is, $a_{4}=a_{0}+4$, hence $a_{4} a_{6} \in E(H)$, and a_{4}, a_{6}, a_{7}, a_{8} form a $K_{1,3}$, a contradiction, too.

Suppose that $a_{2} a_{6} \notin E(H)$, then $a_{6}=m+$ $4, a_{7}=m+5, a_{8}=m+6$, and $m=7(q-1)+1$, so $a_{2} a_{5} \in E(H)$ (otherwise, $a_{5}, a_{6}, a_{7}, a_{8}$ form a $\left.K_{1,3}\right)$, and $a_{2} a_{3}, a_{3} a_{4}, a_{4} a_{5} \notin E(H)$ by Claim 3, thus $a_{3} \leq 7$, and $a_{5} a_{7} \notin E(H)$ (otherwise, $a_{2}, a_{5}, a_{7}, a_{8}$ form a $K_{1,3}$), i. e., $a_{5} \geq m+1$. If $a_{2} a_{4} \notin E(H)$, then $a_{4}=5$ (otherwise, $6 \leq a_{4} \leq 7$ and $a_{4}, a_{6}, a_{7}, a_{8}$ form a $K_{1,3}$), thus, $a_{5}=9$ and $m=8$, hence $a_{1}, a_{2}, a_{5}, a_{8}$ form a $K_{1,3}$, a contradiction. Therefore, $a_{2} a_{4} \in E(H)$, so $a_{1} a_{5}, a_{0} a_{4} \notin E(H)$ (otherwise, $a_{1}, a_{4}, a_{2}, a_{5}$ form a 4-cycle, or $a_{0}, a_{1}, a_{2}, a_{4}$ form a $K_{1,3}$), thus $a_{4} \geq m+1, a_{5}-a_{1} \geq m+1$, and $a_{3} a_{8} \notin E(H)$ (otherwise, $a_{3}, a_{6}, a_{7}, a_{8}$ form a $K_{1,3}$), i. e., $4 \leq a_{3} \leq 5$, and $m=8$. Moreover, $a_{4}=9$ and $a_{3}=5$, then $a_{3}, a_{5}, a_{6}, a_{7}$ form a $K_{1,3}$, a contradiction, too.
(4) Suppose that $a_{2}=2$. Then $a_{1}=1$, and $a_{0}=$ 0.

If $a_{2} a_{6} \in E(H)$, then $m+1 \leq a_{6} \leq m+2$, $a_{5}-a_{3} \leq 4, m-3 \leq a_{6}-4 \leq a_{4} \leq 6, a_{8} \geq m+3$ by Claims 2-3, thus $a_{0} a_{4} \in E(H)$, and $m \in[8,9]$. Moreover, $a_{1} a_{4} \notin E(H)$ or $a_{4} a_{7} \notin E(H)$, i. e., $a_{4}=5$, or $a_{4}=6$ and $a_{7}=m+2=10$. In the former case, it is obvious that $a_{0}, a_{1}, a_{5}, a_{8}$ induce a $K_{1,3}$ if $a_{5}=6, a_{0}, a_{1}, a_{2}, a_{5}$ induce a $K_{1,3}$ if $6<a_{5} \leq$ m, and $a_{1}, a_{2}, a_{3}, a_{5}$ induce a $K_{1,3}$ if $a_{5}=m+1$, a contradiction. In the latter case, $a_{0}, a_{1}, a_{4}, a_{8}$ induce a $K_{1,3}$, a contradiction.

Suppose that $a_{2} a_{6} \notin E(H)$, i. e., $a_{6} \geq m+3$. If $a_{2} a_{5} \in E(H)$, then $a_{5} \geq m+1$ (otherwise, $a_{0}, a_{1}, a_{2}, a_{5}$ induce a $K_{1,3}$), so $a_{3} \leq 6$ and $a_{4} \geq a_{5}-$ 4 by Claim 3, thus $a_{3} \leq 4$ (otherwise, $a_{0}, a_{3}, a_{6}, a_{7}$ induce a $K_{1,3}$ if $a_{3}=5$, and $a_{0}, a_{1}, a_{3}, a_{8}$ induce a $K_{1,3}$ if $a_{3}=6$), hence $a_{3} a_{5} \in E(H), a_{5} \geq m+2$ and $a_{4} \geq a_{5}-4 \geq m-2$ by $a_{1} a_{5}, a_{4} a_{5} \notin E(H)$, therefore $a_{0}, a_{1}, a_{4}, a_{8}$ induce a $K_{1,3}$ if $a_{4}=6$, $a_{0}, a_{1}, a_{2}, a_{4}$ induce a $K_{1,3}$ if $6<a_{4} \leq m$, and $a_{2}, a_{4}, a_{3}, a_{5}$ induce a cycle if $a_{4}>m$, a contradiction. If $a_{2} a_{5} \notin E(H)$, then $a_{5} \leq 6$ or $a_{5} \geq m+3$. In the former case, $a_{0} a_{5} \in E(H)$, and $a_{5} a_{7} \notin E(H)$
or $a_{5} a_{8} \notin E(H)$, so $a_{5}=6, a_{7}=10$ and $m=8$, or $a_{5}=5$ and $a_{8}=m+6$, hence $a_{0}, a_{1}, a_{5}, a_{8}$ induce a $K_{1,3}$, or $a_{0}, a_{5}, a_{6}, a_{7}$ induce a $K_{1,3}$, a contradiction. In the latter case, $a_{5}=m+3=a_{6}-1=$ $a_{7}-2=a_{8}-3$, then $a_{4}=4$ or $a_{4}=m+2$ (otherwise, $a_{4}, a_{5}, a_{6}, a_{7}$ induce a $K_{1,3}$ when $a_{4}=5$, $a_{0}, a_{1}, a_{4}, a_{8}$ induce a $K_{1,3}$ when $6 \leq a_{4} \leq m$, and $a_{1}, a_{2}, a_{4}, a_{8}$ induce a $K_{1,3}$ when $a_{4}=m+1$). If $a_{4}=4$, then every color colored seven consecutive vertices except α and some color β that colored

$$
b_{5}>b_{4}>b_{3}>b_{2}>b_{1}>b_{0}(\geq 5)
$$

in H, so vertices $m+8, m+9, m+10$ receive color β and are all adjacent to b_{5}, a contradiction. If $a_{4}=$ $m+2$, then $a_{3}=3$ (otherwise, $a_{3}, a_{4}, a_{5}, a_{6}$ induce a $K_{1,3}$ when $4 \leq a_{3} \leq m-3, a_{0}, a_{1}, a_{3}, a_{8}$ induce a $K_{1,3}$ when $m-2 \leq a_{3} \leq m$, and $a_{1}, a_{2}, a_{3}, a_{8}$ induce a $K_{1,3}$ when $a_{3}=m+1$), thus every color colored seven consecutive vertices except α and some color β that colored

$$
(m+1 \geq) b_{5}>b_{4}>b_{3}>b_{2}>b_{1}>b_{0}(\geq 4)
$$

in H, so vertices $-4,-3,-2$ receive color β and are all adjacent to b_{0}, a contradiction, too.

Hence Claim 4 holds.
Claim 5: In H, if

$$
\begin{aligned}
& b-a=7(q-1)-2, \quad t \geq m+1 \\
& a+t-b>1 \quad(\text { i.e. }, b-t<a-1)
\end{aligned}
$$

and $7(q-1)$ vertices in $[a, b] \cup\{a+t\}$ (or $\{b-t\} \cup$ $[a, b]$) colored $q-1$ colors, then a and $a+t$ (or a and $b-t$) have the same color.

Assume that a and $a+t$ have different colors, then, by Claim 1, each color colored consecutive seven vertices, which is impossible. Similarly, a and $b-t$ have the same color.

Claim 6: $m=7(q-1)+1$.
Suppose that

$$
m \geq 7(q-1)+2 \geq 9
$$

By Claim 2, $a_{6}-a_{0}>m$ and $a_{7}-a_{1}>m$. Then there is $1 \leq h \leq 5$ such that $a_{h}-a_{0} \leq m$, and $a_{h+1}-a_{0}>m$.

Case 1. $h=1$.
Then $a_{1}-a_{0} \leq m$, and $a_{2}-a_{0}>m$, so
$a_{7}-a_{2} \leq 7 q-(m+1) \leq(m+5)-(m+1) \leq 4$, which contradicts $a_{7}-a_{2} \geq 5$.

Case 2. $h=2$.

We have $a_{2}-a_{0} \leq m, a_{3}-a_{0}>m$, and

$$
a_{7}-a_{3} \leq 7 q-(m+1) \leq 4
$$

in this case, so $a_{7}-a_{3}=4$, i. e., $a_{3}=m+1$, $a_{7}=a_{6}+1=a_{5}+2=a_{4}+3=a_{3}+4=7 q$, $m=7(q-1)+2$, and $a_{0}=0$. Since $a_{7}-a_{1}>m$,

$$
a_{1} \leq a_{7}-(m+1) \leq(m+5)-(m+1) \leq 4
$$

that is, $1 \leq a_{1} \leq 4$, then $a_{1} a_{3} \in E(H)$.
If $a_{1}=1$, then the remainder $7(q-1)$ vertices $[2, m] \backslash\left\{a_{2}\right\}$ in H colored $q-1$ colors by Claim 1 , such that each color colored seven vertices as

$$
u(\geq 2), u+1, u+2, u+3, u+4, u+5, u+6
$$

by Claim 2 , so $m+6$ and $m+7$ would color α, but they form a $K_{1,3}$ with a_{3}, a_{1}, a contradiction.

If $2 \leq a_{1} \leq 4$, then the remainder $7(q-1)$ vertices $[1, m] \backslash\left\{a_{1}, a_{2}\right\}$ in H colored $q-1$ colors, by Claim 1, each color would color consecutive seven vertices, which is impossible.

Case 3. $h=3$.
We have $a_{3}-a_{0} \leq m, a_{4}-a_{0}>m$, so

$$
m+1 \leq a_{4} \leq m+2
$$

and $0 \leq a_{0} \leq 1$. By $a_{7}-a_{1}>m$, we can obtain that $1 \leq a_{1} \leq 4$.
(1) If $a_{4}=m+2$, then

$$
a_{7}=a_{6}+1=a_{5}+2=a_{4}+3=7 q
$$

and $m=7(q-1)+2$.
(1.1) Assume that $2 \leq a_{1} \leq 4$, then $a_{1} a_{4} \in$ $E(H)$, so $a_{1} a_{2}, a_{3} a_{4} \notin E(H)$ by Claim 3, i. e., $a_{2}-$ $a_{1} \leq 4$, and $a_{4}-a_{3} \leq 4$, thus $m-2 \leq a_{3} \leq m+1$. If

$$
m-2 \leq a_{3} \leq m
$$

then $a_{0} a_{3}, a_{3} a_{7} \in E(H)$, so $a_{3} a_{6} \notin E(H)$, i. e., $a_{6}-a_{3} \leq 4$, thus $a_{3} \geq a_{6}-4 \geq m$, moreover $a_{3}=m$, and $a_{1} a_{3} \in E(\bar{H})$, hence $a_{0}, a_{1}, a_{3}, a_{7}$ form a $K_{1,3}$, a contradiction. Therefore, $a_{3}=m+1$, and $a_{0}=1$, then $a_{0} a_{3}, a_{1} a_{3} \in E(H)$, so $a_{1} a_{5} \notin E(H)$, i. e., $a_{5}-a_{1}>m$, and $a_{1} \leq a_{5}-(m+1) \leq 2$, thus $a_{1}=2$. Hence the remainder $7(q-1)$ vertices

$$
\{0\} \cup[3, m] \backslash\left\{a_{2}\right\}
$$

in H colored $q-1$ colors, by Claim 1, each color colored seven consecutive vertices, which is impossible.
(1.2) Assume that $a_{1}=1$, then $a_{0}=0$, and $3 \leq a_{3} \leq m$. If $6 \leq a_{3} \leq m$, then $a_{0} a_{3}, a_{1} a_{3}, a_{3} a_{7} \in$ $E(H)$, a contradiction. If $4 \leq a_{3} \leq 5$, then $a_{3} a_{4}, a_{3} a_{5}, a_{3} a_{6} \in E(H)$, a contradiction. Hence
$a_{3}=3$, and $a_{2}=2$, so the remainder $7(q-1)$ vertices $[4, m+1]$ in H colored $q-1$ colors such that each color colored seven vertices as

$$
u(\geq 4), u+1, u+2, u+3, u+4, u+5, u+6
$$

by Claim 1, then by Claim 2, $m+9$ would color α and form a $K_{1,3}$ with a_{4}, a_{5}, a_{6}, a contradiction.
(2) Suppose that $a_{4}=m+1$. Then $a_{0}=0$, and $a_{1} a_{4} \in E(H)$, so $a_{1} a_{2}, a_{3} a_{4} \notin E(H)$ by Claim 3, i. e., $a_{2}-a_{1} \leq 4$, and $a_{4}-a_{3} \leq 4$, thus $m-$ $3 \leq a_{3} \leq m$. If $m-3 \leq a_{3} \leq m-1$, then $a_{0} a_{3}$, $a_{3} a_{7} \in E(H)$, so $a_{1} a_{3}, a_{3} a_{6} \notin E(H)$, i. e., $a_{3}-$ $a_{1} \leq 4$, and $a_{6}-a_{3} \leq 4$, thus $a_{3} \geq a_{6}-4 \geq$ $m-1$, and $a_{3}=m-1, a_{1} \geq a_{3}-4 \geq m-5 \geq$ 4 , hence $a_{1}=4$, and $a_{1}, a_{4}, a_{5}, a_{6}$ induce a $K_{1,3}$, a contradiction. Therefore, $a_{3}=m$, and $a_{0} a_{3}, a_{1} a_{3} \in$ $E(H)$, so $a_{2} a_{3}, a_{3} a_{7} \notin E(H)$, that is, $a_{7}-a_{3}=4$, and then $a_{7}=m+4, a_{6}=m+3, a_{5}=m+2$, and $m-4 \leq a_{2} \leq m-1$. Moreover, $a_{0} a_{2}, a_{2} a_{7} \in$ $E(H)$, so $a_{1} a_{2}, a_{2} a_{6} \notin E(H)$, i. e., $a_{6}-a_{2}=4$, and $a_{2}-a_{1} \leq 4$, hence $a_{2}=m-1$, and $a_{1}=4$, thus $a_{7}-a_{1}=m$ which contradicts Claim 2.

Case 4. $h=4$.
We have $a_{4}-a_{0} \leq m$, and $a_{5}-a_{0}>m$, so $m+1 \leq a_{5} \leq m+3$, and $0 \leq a_{0} \leq 2$.

Assume that $a_{4}-a_{0}=4$. If $a_{0}=2$, then $a_{1}=3$, $a_{2}=4, a_{3}=5$ and $a_{4}=6$, so $a_{1} a_{5}, a_{2} a_{5}, a_{3} a_{5} \in$ $E(H)$, a contradiction. If $a_{0}=1$, then $a_{1}=2, a_{2}=$ $3, a_{3}=4$ and $a_{4}=5$, so $a_{2} a_{5}, a_{3} a_{5}, a_{4} a_{5} \in E(H)$, a contradiction. If $a_{0}=0$, then $a_{1}=1, a_{2}=2$, $a_{3}=3, a_{4}=4$,thus $a_{2} a_{5}, a_{3} a_{5}, a_{4} a_{5} \in E(H)$ when $m+1 \leq a_{5} \leq m+2$, so $a_{5}=m+3, a_{6}=m+4$, and $a_{7}=m+5$. The remainder at least $7(q-1)$ vertices $[5, m+2]$ in H are colored $q-1$ colors such that each color colored seven vertices as

$$
u(\geq 5), u+1, u+2, u+3, u+4, u+5, u+6
$$

by Claim 1 , hence $m+10$ would color α by Claim 2 and be adjacent to a_{5}, a_{6}, a_{7}, a contradiction.

Therefore, $5 \leq a_{4}-a_{0} \leq m$, so $a_{0} a_{4} \in E(H)$, then, by Claim 3, $a_{0} a_{2}, a_{2} a_{4} \notin E(H)$, i. e., $a_{2}-a_{0} \leq$ 4 , and $a_{4}-a_{2} \leq 4$, thus $5 \leq a_{4}-a_{0} \leq 8$.
(1) If $a_{4}-a_{0}=5$, then $5 \leq a_{4} \leq 7$, so $a_{4} a_{7} \in$ $E(H)$, thus $a_{4} a_{6} \notin E(H)$, i. e., $a_{6}-a_{4} \leq 4$, and

$$
11 \leq m+2 \leq a_{6} \leq 11
$$

Hence $m=9, a_{6}=11, a_{5}=10, a_{4}=7$, and $a_{0}=2$, so $a_{0} a_{6} \in E(H)$ which contradicts Claim 2 .
(2) If $a_{4}-a_{0}=6$, then $a_{6}-a_{0} \geq m+2$ by $a_{5}-a_{0}>m$, so

$$
\begin{aligned}
& 5 \leq m-4 \leq\left(a_{6}-a_{0}\right)-\left(a_{4}-a_{0}\right) \\
& =a_{6}-a_{4}<a_{7}-a_{4} \leq m
\end{aligned}
$$

Thus $a_{0}, a_{4}, a_{6}, a_{7}$ induce a $K_{1,3}$, a contradiction.
(3) If $a_{4}-a_{0}=7$, then $3 \leq a_{4}-a_{2} \leq 4, a_{7}-a_{0} \geq$ $m+3$ by $a_{5}-a_{0}>m$, thus

$$
\begin{aligned}
& 5 \leq m-4 \leq\left(a_{7}-a_{0}\right)-\left(a_{4}-a_{0}\right) \\
& =a_{7}-a_{4} \leq m
\end{aligned}
$$

Hence $a_{4} a_{7} \in E(H)$, so $a_{1} a_{4}, a_{4} a_{6} \notin E(H)$, that is, $a_{6}-a_{4} \leq 4$, and $3 \leq a_{4}-a_{1} \leq 4$, then

$$
\begin{aligned}
& 11 \leq m+2 \leq a_{6}-a_{0} \\
& =\left(a_{6}-a_{4}\right)+\left(a_{4}-a_{0}\right) \leq 11
\end{aligned}
$$

Therefore, $a_{6}-a_{0}=11, m=9, a_{5}-a_{0}=10, a_{4}-$ $a_{1}=4$, and $a_{4}-a_{2}=3$, so $a_{1} a_{5}, a_{1} a_{6}, a_{2} a_{5}, a_{2} a_{6} \in$ $E(H)$, i. e., $a_{1}, a_{2}, a_{5}, a_{6}$ form a 4-cycle, a contradiction.
(4) If $a_{4}-a_{0}=8$, then $a_{4}-a_{2}=a_{2}-a_{0}=4$, so $a_{1} a_{4} \in E(H)$, thus $a_{4} a_{7} \notin E(H)$, i. e., $a_{7}-a_{4} \leq 4$, hence $a_{7}-a_{2} \leq 8$, and $a_{2} a_{5}, a_{2} a_{6}, a_{2} a_{7} \in E(H)$, a contradiction, too.

Case 5. $h=5$.
We have $a_{5}-a_{0} \leq m$, and $a_{6}-a_{0}>m$, then $a_{0} a_{5} \in E(H)$, so $a_{0} a_{3}, a_{1} a_{4}, a_{2} a_{5} \notin E(H)$ by Claim 3, i. e., $3 \leq a_{3}-a_{0} \leq 4, a_{4}-a_{1} \leq 4$, and $3 \leq a_{5}-a_{2} \leq 4$, hence $2 \leq a_{2}-a_{0} \leq 3$, moreover, $5 \leq a_{5}-a_{0} \leq 7,4 \leq a_{4}-a_{0} \leq 6,1 \leq a_{1}-a_{0} \leq 2$, and

$$
m+1 \leq a_{6} \leq m+4
$$

(1) If $a_{6}=m+1$, then $a_{0}=0$. Hence $1 \leq a_{1} \leq$ $2,2 \leq a_{2} \leq 3$, and $3 \leq a_{3} \leq 4$, so $a_{1} a_{6}, a_{2} a_{6}, a_{3} a_{6} \in$ $E(H)$, a contradiction.
(2) Assume that $a_{6}=m+2$, then $0 \leq a_{0} \leq 1$. If $a_{0}=0$, then $3 \leq a_{3} \leq 4,4 \leq a_{4} \leq 6$, and $2 \leq a_{2} \leq$ 3 , so $a_{2} a_{6}, a_{3} a_{6}, a_{4} a_{6} \in E(H)$, a contradiction. If $a_{0}=1$, then $2 \leq a_{1} \leq 3,3 \leq a_{2} \leq 4$, and $4 \leq a_{3} \leq$ 5, so $a_{1} a_{6}, a_{2} a_{6}, a_{3} a_{6} \in E(H)$, a contradiction.
(3) Assume that $a_{6}=m+3$, then $0 \leq a_{0} \leq 2$. If $a_{0}=0$, then $5 \leq a_{5} \leq 7$, so $a_{5} a_{6}, a_{5} a_{7} \in E(H)$, thus $a_{0}, a_{5}, a_{6}, a_{7}$ induce a $K_{1,3}$, a contradiction. If $a_{0}=1$, then $4 \leq a_{3} \leq 5,3 \leq a_{2} \leq 4$, and $5 \leq$ $a_{4} \leq 7$, then $a_{2} a_{6}, a_{3} a_{6}, a_{4} a_{6} \in E(H)$; if $a_{0}=2$, then $3 \leq a_{1} \leq 4,4 \leq a_{2} \leq 5$, and $5 \leq a_{3} \leq 6$, so $a_{1} a_{6}, a_{2} a_{6}, a_{3} a_{6} \in E(H)$, a contradiction, too.
(4) Assume that $a_{6}=m+4$, then $a_{7}=m+5$, and $0 \leq a_{0} \leq 3$. If $0 \leq a_{0} \leq 1$, then $5 \leq a_{5} \leq 8$, and $a_{5} a_{6}, a_{5} a_{7} \in E(H)$, so $a_{0}, a_{5}, a_{6}, a_{7}$ form a $K_{1,3}$, a contradiction. If $a_{0}=2$, then $4 \leq a_{2} \leq 5,5 \leq a_{3} \leq$ 6 , and $6 \leq a_{4} \leq 8$, so $a_{2} a_{6}, a_{3} a_{6}, a_{4} a_{6} \in E(H)$, a contradiction. Hence $a_{0}=3,5 \leq a_{2}<a_{3} \leq 7$, and $7 \leq a_{4} \leq 9$, then $a_{2} a_{7}, a_{3} a_{7}, a_{4} a_{7} \in E(H)$, a contradiction, too.

Therefore, we have

$$
m=7(q-1)+1
$$

and thus Claim 6 holds.
Claim 7: $a_{4} \leq 4$, that is, $a_{0}=0, a_{1}=1, a_{2}=2$, $a_{3}=3$, and $a_{4}=4$.

Subclaim 7.1 $a_{4}-a_{0}=4$.
Otherwise, $a_{4}-a_{0}>4$. We shall get a contradiction according to the related positions of a_{4} and a_{0}.

Case 1. $a_{4}-a_{0}>m$.
There is $1 \leq h<4$, such that $a_{h}-a_{0} \leq m$, and $a_{h+1}-a_{0}>m$. By Claim 2, it is easy to see that $2 \leq h \leq 3$.
(1) Suppose that $h=2$, then $a_{2}-a_{0} \leq m$, and $a_{3}-a_{0}>m$, so $m+1 \leq a_{3} \leq m+2$. By $a_{7}-a_{1}>m$, we have $1 \leq a_{1} \leq 5$.
(1.1) Assume that $a_{3}=m+1$, then $a_{0}=0$. If $1 \leq a_{1} \leq 4$, then $a_{1} a_{3} \in E(H)$, and thus $a_{2} a_{3} \notin$ $E(H)$ or $a_{3} a_{7} \notin E(H)$. If $a_{2} a_{3} \notin E(H)$, then $a_{3}-a_{2} \leq 4$, i. e., $m-3 \leq a_{2} \leq m$, so $a_{0} a_{2}$, $a_{2} a_{6}, a_{2} a_{7} \in E(H)$ when $m-2 \leq a_{2} \leq m-1$, and $a_{0} a_{2}, a_{2} a_{4}, a_{2} a_{5} \in E(H)$ when $a_{2}=m-3$, a contradiction. Hence $a_{2}=m$, so $a_{0} a_{2}, a_{2} a_{7} \in$ $E(H)$, thus $a_{1} a_{2}, a_{2} a_{6} \notin E(H)$, i. e., $a_{6}-a_{2}=4$ and $4 \leq m-4 \leq a_{2}-4 \leq a_{1} \leq 4$. Moreover, $m=8, a_{1}=4, a_{6}=m+4, a_{5}=m+3, a_{4}=$ $m+2$, and $a_{1} a_{4}, a_{1} a_{5}, a_{1} a_{6} \in E(H)$, a contradiction. Therefore, $a_{2} a_{3} \in E(H)$, then $a_{3} a_{7} \notin E(H)$, i. e., $a_{7}-a_{3}=4$, and $a_{3}-a_{2} \geq 5$, so $2 \leq a_{2} \leq m-4$, $a_{7}=m+5, a_{6}=m+4, a_{5}=m+3$, and $a_{4}=$ $m+2$. If $3 \leq a_{2} \leq m-4$, then $a_{2}, a_{3}, a_{4}, a_{5}$ induce a $K_{1,3}$, a contradiction. Hence $a_{2}=2, a_{1}=1$, and $a_{2} a_{4} \in E(H)$, so the remainder $7(q-1)$ vertices $[3, m] \cup\{m+6\}$ in H colored $q-1$ colors. By Claim 5 , there is some color β colored seven vertices
$3=h_{0}<h_{1}<h_{2}<h_{3}<h_{4}<h_{5}<h_{6}=m+6$,
but h_{3}, h_{4}, h_{5} are all adjacent to $m+6$ since $6 \leq h_{3}<$ $h_{4}<h_{5} \leq m$, a contradiction.

Therefore, $a_{1}=5$, and $a_{7}=m+6$, then $a_{0} a_{1}, a_{1} a_{5}, a_{1} a_{6} \in E(H)$, a contradiction, too.
(1.2) Assume that $a_{3}=m+2$, then $a_{4}=m+3$, $a_{5}=m+4, a_{6}=m+5$, and $a_{7}=m+6$.
(1.2.1)If $4 \leq a_{1} \leq 5$, then $a_{1} a_{3}, a_{1} a_{4}, a_{1} a_{5} \in$ $E(H)$, a contradiction.
(1.2.2) If $a_{1}=3$, then $a_{1} a_{3}, a_{1} a_{4} \in E(H)$, then $a_{1} a_{2} \notin E(H)$, i. e., $4 \leq a_{2} \leq 7$. We have $a_{2} a_{3}, a_{2} a_{4}, a_{2} a_{5} \in E(H)$ when $4 \leq a_{2} \leq 5$, and $a_{2} a_{5}, a_{2} a_{6}, a_{2} a_{7} \in E(H)$ when $6 \leq a_{2} \leq 7$, a contradiction.
(1.2.3) If $a_{1}=2$, then $a_{1} a_{3} \in E(H)$. For $a_{0}=0$, the remainder $7(q-1)$ vertices $\{1\} \cup$ $[3, m+1] \backslash\left\{a_{2}\right\}$ in H colored $q-1$ colors such that each color colored seven consecutive vertices by Claim 1, which is impossible. For $a_{0}=1$, we have $3 \leq a_{2} \leq m+1$, and $a_{2} a_{3}, a_{2} a_{4}, a_{2} a_{5} \in E(H)$
when $4 \leq a_{2} \leq m-3, a_{0} a_{2}, a_{2} a_{6}, a_{2} a_{7} \in E(H)$ when $m-2 \leq a_{2} \leq m$, and $a_{0} a_{2}, a_{1} a_{2}, a_{2} a_{7} \in$ $E(H)$ when $a_{2}=m+1$, hence $a_{2}=3$, then $a_{1} a_{3}, a_{2} a_{3} \in E(H)$, and the remainder $7(q-1)$ vertices $\{0\} \cup[4, m+1]$ in H colored $q-1$ colors, such that each color colored seven consecutive vertices except β colored seven vertices

$$
0<h_{1}<h_{2}<h_{3}<h_{4}<h_{5}<m+1
$$

by Claim 5, but h_{2}, h_{3}, h_{4} are all adjacent to 0 since

$$
5 \leq h_{2}<h_{3}<h_{4} \leq m-1
$$

a contradiction.
(1.2.4) If $a_{1}=1$, then $a_{0}=0$, thus the remainder $7(q-1)$ vertices $[2, m+1] \backslash\left\{a_{2}\right\}$ in H colored $q-1$ colors such that each color colored seven vertices as

$$
u(\geq 2), u+1, u+2, u+3, u+4, u+5, u+6
$$

by Claim 1, so $m+7$ and $m+8$ would color α and be adjacent to a_{3}, so $a_{2} a_{3} \notin E(H)$, i. e., $m-2 \leq a_{2} \leq$ $m+1$. If $m-2 \leq a_{2} \leq m$, then $a_{0} a_{2}, a_{1} a_{2}, a_{2} a_{6} \in$ $E(H)$. Hence $a_{2}=m+1$, so $m+8$ is adjacent to a_{2}, a_{3}, a_{4}, a contradiction, too.
(2) Suppose that $h=3$, then $a_{3}-a_{0} \leq m$, and $a_{4}-a_{0}>m$, so $m+1 \leq a_{4} \leq m+3$.

If $a_{4} a_{7} \in E(H)$, then $a_{7}-a_{4} \geq 5$, so $a_{7}=$ $m+6, a_{4}=m+1$, and $a_{0}=0$. By $a_{7}-a_{1}>m$, we have $1 \leq a_{1} \leq 5$. If $a_{1}=5$, then $a_{0} a_{1}, a_{1} a_{5}, a_{1} a_{6} \in$ $E(H)$, a contradiction. Hence $1 \leq a_{1} \leq 4$, so $a_{1} a_{4} \in$ $E(H)$, and then $a_{2} a_{4} \notin E(H)$, i. e., $a_{4}-a_{2} \leq 4$, thus $m-3 \leq a_{2} \leq m-1$. For $m-2 \leq a_{2} \leq m-1$, $a_{0} a_{2}, a_{0} a_{3}, a_{2} a_{7}, a_{3} a_{7} \in E(H)$, i. e., $a_{0}, a_{2}, a_{7}, a_{3}$ form a 4-cycle, a contradiction. For $a_{2}=m-3$, $a_{0} a_{2}, a_{2} a_{5}, a_{2} a_{6} \in E(H)$, a contradiction. Therefore, $a_{4} a_{7} \notin E(H)$, that is, $a_{7}-a_{4} \leq 4$.
(2.1) Assume that $a_{4}=m+1$, then $a_{0}=0$, $m+4 \leq a_{7} \leq m+5$, and $1 \leq a_{1} \leq 4$, so $a_{1} a_{4} \in$ $E(H)$, and thus $a_{3} a_{4} \notin E(\bar{H})$ by Claim 3, i. e., $a_{4}-a_{3} \leq 4$, hence $m-3 \leq a_{3} \leq m$.
(2.1.1) If $m-3 \leq a_{3} \leq m-2$, then $a_{0} a_{3}, a_{3} a_{6}, a_{3} a_{7} \in E(H)$, a contradiction.
(2.1.2) If $a_{3}=m-1$, then $a_{0} a_{3}, a_{3} a_{7} \in E(H)$, so $a_{1} a_{3}, a_{3} a_{6} \notin E(H)$, i. e., $a_{3}-a_{1} \leq 4$, and $a_{6}-a_{3} \leq 4$, hence $a_{6}=m+3, a_{5}=m+2$, $3 \leq m-5 \leq a_{1} \leq 4$, and $a_{1}, a_{4}, a_{5}, a_{6}$ induce a $K_{1,3}$, a contradiction.
(2.1.3) If $a_{3}=m$, then $a_{0} a_{3} \in E(H)$, so $a_{2} a_{3} \notin$ $E(H)$, i. e., $a_{3}-a_{2} \leq 4$. If $a_{3} a_{7} \in E(H)$, then $a_{7}=m+5$, and $a_{1} a_{3} \notin E(H)$, i. e., $a_{1} \geq m-4$, so $a_{2} \geq m-3$, and $a_{0}, a_{2}, a_{7}, a_{3}$ induce a 4-cycle, a contradiction. Therefore, $a_{3} a_{7} \notin E(H), a_{7}=m+4$, $a_{6}=m+3, a_{5}=m+2$, and $1 \leq a_{1} \leq 3$, thus, $a_{1} a_{3}, a_{1} a_{4}, a_{1} a_{5} \in E(H)$ when $2 \leq a_{1} \leq 3$, then
$a_{1}=1$, so $a_{1} a_{3}, a_{1} a_{4} \in E(H)$, and $a_{1} a_{2} \notin E(H)$, that is, $4 \leq m-4 \leq a_{2} \leq a_{1}+4 \leq 5$, hence $a_{2} a_{5}, a_{2} a_{6}, a_{2} a_{7} \in E(H)$, a contradiction.
(2.2) Suppose that $a_{4}=m+2$, then $m+5 \leq$ $a_{7} \leq m+6,0 \leq a_{0} \leq 1$, and $1 \leq a_{1} \leq 5$.
(2.2.1) Assume that $2 \leq a_{1} \leq 5$, then $a_{1} a_{4} \in$ $E(H)$, so $a_{3} a_{4} \notin E(H)$, i. e., $a_{4}-a_{3} \leq 4$, and $m-2 \leq a_{3} \leq m+1$.
(2.2.1.1) If $m-2 \leq a_{3} \leq m-1$, then $a_{0} a_{3}$, $a_{3} a_{6}, a_{3} a_{7} \in E(H)$, a contradiction.
(2.2.1.2) If $a_{3}=m$, then $a_{0} a_{3}, a_{3} a_{7} \in E(H)$, so $a_{1} a_{3}, a_{3} a_{6} \notin E(H)$, i. e., $a_{6}-a_{3} \leq 4$, and $a_{3}-a_{1} \leq$ 4 , thus $a_{6}=m+4, a_{5}=m+3,4 \leq m-4 \leq a_{1} \leq 5$, and $a_{1}, a_{4}, a_{5}, a_{6}$ induce a $K_{1,3}$, a contradiction.
(2.2.1.3) If $a_{3}=m+1$, then $a_{0}=1$, and $a_{0} a_{3} \in$ $E(H)$, so $a_{2} a_{3} \notin E(H)$, i. e., $m-3 \leq a_{2} \leq m$, thus, $a_{0} a_{2}, a_{2} a_{6}, a_{2} a_{7} \in E(H)$ when $m-2 \leq a_{2} \leq$ $m-1$, and $a_{2} a_{4}, a_{2} a_{5}, a_{2} a_{6} \in E(H)$ when $a_{2}=m-$ 3, a contradiction. Hence $a_{2}=m$, so $a_{0} a_{2}, a_{2} a_{7} \in$ $E(H)$, then $a_{1} a_{2}, a_{2} a_{6} \notin E(H)$, i. e., $a_{6}-a_{2}=4$, and $a_{2}-a_{1} \leq 4$, thus $a_{6}=m+4, a_{5}=m+3$, $4 \leq m-4 \leq a_{1} \leq 5$, and $a_{1}, a_{4}, a_{5}, a_{6}$ induce a $K_{1,3}$, a contradiction, too.
(2.2.2) Assume that $a_{1}=1$, then $a_{0}=0$, and $3 \leq a_{3} \leq m$.
(2.2.2.1) If $6 \leq a_{3} \leq m$, then $a_{0} a_{3}, a_{1} a_{3}, a_{3} a_{7} \in$ $E(H)$, a contradiction.
(2.2.2.2) If $a_{3}=5$, then $a_{0} a_{3}, a_{3} a_{4}, a_{3} a_{5} \in$ $E(H)$, a contradiction.
(2.2.2.3) If $a_{3}=4$, then $a_{3} a_{4}, a_{3} a_{5} \in E(H)$, so $a_{3} a_{6} \notin E(H)$, thus $a_{7}=m+6, a_{6}=m+5$, and $2 \leq$ $a_{2} \leq 3$, hence $a_{2}=3, a_{5}=m+3$, and $a_{2}, a_{3}, a_{4}, a_{5}$ form a 4-cycle when $a_{2} a_{5} \in E(H)$, a contradiction. Therefore, $a_{2} a_{5} \notin E(H)$. If $a_{2}=3$, then $a_{5}=$ $m+4$, and the remainder $7(q-1)$ vertices $[5, m+1] \cup$ $\{2, m+3\}$ in H colored $q-1$ colors, such that each color colored seven consecutive vertices, except some color β colored vertices

$$
2<h_{1}<h_{2}<h_{3}<h_{4}<h_{5}<m+3
$$

by Claim 5 , so β would color $m+8$ which is adjacent to $m+3, h_{4}$, and h_{5}, a contradiction. Hence $a_{2}=2$, and $m+3 \leq a_{5} \leq m+4$. If $a_{5}=m+4$, then the remainder $7(q-1)$ vertices $[5, m+1] \cup\{3, m+3\}$ in H colored $q-1$ colors, such that each color colored seven consecutive vertices by Claim 1, which is impossible. Hence $a_{5}=m+3$, then the remainder $7(q-1)$ vertices $[5, m+1] \cup\{3, m+4\}$ in H colored $q-1$ colors such that each color colored seven consecutive vertices, except some color β colored vertices

$$
3<h_{1}<h_{2}<h_{3}<h_{4}<h_{5}<m+4
$$

but h_{1}, h_{2}, h_{3} are all adjacent to $m+4$ since $5 \leq h_{1}<$ $h_{2}<h_{3} \leq m-1$, a contradiction.
(2.2.2.4) Assume that $a_{3}=3$, then $a_{2}=2$, so $a_{2} a_{4}, a_{3} a_{4} \in E(H)$.If $a_{7}=m+5$, then $a_{6}=m+4$, and $a_{5}=m+3$, so the remainder $7(q-1)$ vertices $[4, m+1] \cup\{m+6\}$ in H colored $q-1$ colors, such that each color colored seven consecutive vertices except some color β colored vertices

$$
4<h_{1}<h_{2}<h_{3}<h_{4}<h_{5}<m+6
$$

by Claim 5, but h_{3}, h_{4}, h_{5} are all adjacent to $m+6$ since

$$
7 \leq h_{3}<h_{4}<h_{5} \leq m+1
$$

a contradiction. Hence $a_{7}=m+6$. If $a_{6}=m+$ 5 , then the remainder $7(q-1)$ vertices $[4, m+1] \cup$ $\{m+3\}$ or $[4, m+1] \cup\{m+4\}$ in H colored $q-1$ colors, such that each color colored seven consecutive vertices by Claim 1, which is impossible. Therefore, $a_{6}=m+4$, and $a_{5}=m+3$, then the remainder $7(q-$ 1) vertices $[4, m+1] \cup\{m+5\}$ in H colored $q-1$ colors, such that each color colored seven consecutive vertices except some color β colored vertices

$$
4<h_{1}<h_{2}<h_{3}<h_{4}<h_{5}<m+5
$$

by Claim 5, but h_{1}, h_{2}, h_{3} are all adjacent to $m+5$ since

$$
5 \leq h_{1}<h_{2}<h_{3} \leq m-1
$$

a contradiction, too.
(2.3) Assume that $a_{4}=m+3$, then $a_{5}=m+4$, $a_{6}=m+5, a_{7}=m+6$, and $0 \leq a_{0} \leq 2$.
(2.3.1) If $6 \leq a_{3} \leq m-1$, then $a_{3} a_{5}, a_{3} a_{6}$, $a_{3} a_{7} \in E(H)$, a contradiction.
(2.3.2) If $a_{3}=m$, then $a_{0} a_{3}, a_{3} a_{6}, a_{3} a_{7} \in$ $E(H)$, a contradiction.
(2.3.3) If $a_{3}=m+1$, then $1 \leq a_{0} \leq 2$, so $a_{0} a_{3}, a_{3} a_{7} \in E(H)$, thus $a_{1} a_{3}, a_{3} a_{6} \notin E(H)$, so $a_{3}-a_{1} \leq 4$ and $a_{7}-a_{3}=5$, hence $9 \leq m+1 \leq$ $a_{7}-a_{1} \leq 9$, thus $a_{7}-a_{1}=9$, i. e., $a_{1}=5$, and $a_{1} a_{4}, a_{1} a_{5}, a_{1} a_{6} \in E(H)$, a contradiction.
(2.3.4) Assume that $a_{3}=m+2$, then $a_{0}=2$, and $3 \leq a_{1} \leq 5$, so $a_{0} a_{3}, a_{1} a_{3} \in E(H)$, hence $a_{2} a_{3} \notin$ $E(H)$, i. e., $m-2 \leq a_{2} \leq m+1$. If $a_{2}=m-2$, then $a_{2} a_{4}, a_{2} a_{5}, a_{2} a_{6} \in E(H)$, a contradiction. If $m-1 \leq a_{2} \leq m+1$, then $a_{0} a_{2}, a_{2} a_{7} \in E(H)$, so $a_{2} a_{6} \notin E(H)$, i. e., $a_{6}-a_{2}=4$, and $a_{2}=$ $m+1$, thus, $a_{1} a_{2} \in E(H)$ and $a_{0}, a_{2}, a_{1}, a_{3}$ induce a 4 -cycle when $3 \leq a_{1} \leq 4$, and $a_{1}, a_{3}, a_{4}, a_{5}$ induce a $K_{1,3}$ when $a_{1}=5$, a contradiction.
(2.3.5) If $a_{3}=5$, then $a_{3} a_{4}, a_{3} a_{5}, a_{3} a_{6} \in$ $E(H)$, a contradiction.
(2.3.6) If $a_{3}=4$ and $a_{0}=1$, then $a_{1}=2, a_{2}=$ 3 , and $a_{3} a_{4}, a_{3} a_{5}, a_{2} a_{4} \in E(H)$, so the remainder $7(q-1)$ vertices $\{0\} \cup[5, m+2]$ in H colored $q-1$
colors, such that each color colored seven consecutive vertices, except some color β colored vertices

$$
0<h_{1}<h_{2}<h_{3}<h_{4}<h_{5}<m+2
$$

by Claim 5 , but h_{1}, h_{2}, h_{3} are all adjacent to 0 since $5 \leq h_{1}<h_{2}<h_{3} \leq m-1$, a contradiction. If $a_{3}=4$ and $a_{0}=0$, then a_{2} is 2 or 3 when $a_{1}=$ 1 , and in this case the remainder $7(q-1)$ vertices $\{2\} \cup[5, m+2]$ or $\{3\} \cup[5, m+2]$ in H colored $q-1$ colors, such that each color colored seven consecutive vertices which is impossible, hence $a_{1}=2, a_{2}=3$, $a_{2} a_{4}, a_{3} a_{4} \in E(H)$, and in this case the remainder $7(q-1)$ vertices $\{1\} \cup[5, m+2]$ in H colored $q-1$ colors, such that each color colored seven consecutive vertices, except some color β colored vertices

$$
1<h_{1}<h_{2}<h_{3}<h_{4}<h_{5}<m+2
$$

by Claim 5, but h_{2}, h_{3}, h_{4} are all adjacent to 1 since

$$
6 \leq h_{2}<h_{3}<h_{4} \leq m
$$

a contradiction.
(2.3.7) If $a_{3}=3$, then $a_{1}=1, a_{2}=2$,and $a_{0}=0$, so the remainder $7(q-1)$ vertices $[4, m+2]$ in H colored $q-1$ colors, such that each color colored seven consecutive vertices as

$$
u(\geq 4), u+1, u+2, u+3, u+4, u+5, u+6
$$

thus $m+10$ would color α and be adjacent to a_{4}, a_{5}, a_{6}, a contradiction, too.

Case 2. $5 \leq a_{4}-a_{0} \leq m$.
Since $a_{0} a_{4} \in E(H)$, we have $a_{0} a_{2}, a_{2} a_{4}, a_{1} a_{3} \notin$ $E(H)$ by Claim 3, i. e., $a_{2}-a_{0} \leq 4, a_{4}-a_{2} \leq 4$, and $a_{3}-a_{1} \leq 4$, then $5 \leq a_{4}-a_{0} \leq 8$. By $a_{7}-a_{1} \geq$ $m+1$, we have $a_{7}-a_{0} \geq m+2$. In the following we shall get a contradiction according to the related positions of a_{0} and a_{4}.

It is obvious that

$$
\begin{aligned}
& a_{6}-a_{4}=\left(a_{6}-a_{0}\right)-\left(a_{4}-a_{0}\right) \\
& \geq m+1-5 \geq m-4
\end{aligned}
$$

(1) Suppose that $a_{4}-a_{0}=5$.
(1.1) Assume that $a_{4}=5$, then $a_{0}=0$. If $m+2 \leq a_{7} \leq m+5$, then $a_{4} a_{7} \in E(H)$, so $a_{4} a_{6} \notin E(H)$, i. e., $4 \leq m-4 \leq a_{6}-a_{4} \leq$ 4 , then $m=8, a_{6}=9$, and $a_{1} a_{6}, a_{2} a_{6}, a_{3} a_{6} \in$ $E(H)$, a contradiction. Hence $a_{7}=m+6$, so $a_{1} a_{6}, a_{2} a_{6}, a_{3} a_{6} \in E(H)$ if $a_{6}=m+1$, a contradiction. Therefore, $m+2 \leq a_{6} \leq m+5$, then $a_{4} a_{6} \in E(H)$, so $a_{4} a_{5} \notin E(H)$, i. e., $6 \leq a_{5} \leq 9$, we have $a_{1} a_{5}, a_{2} a_{5}, a_{3} a_{5} \in E(H)$ when $a_{5}=9$, $a_{0} a_{5}, a_{1} a_{5}, a_{5} a_{7} \in E(H)$ when $7 \leq a_{5} \leq 8$, thus we
have $a_{5}=6$, and $a_{0} a_{5}, a_{5} a_{7} \in E(H)$, which induces $a_{5} a_{6} \notin E(H)$, i. e., $10 \leq m+2 \leq a_{6} \leq 10$, that is, $a_{6}=10, m=8$, and $a_{2} a_{6}, a_{3} a_{6}, a_{4} a_{6} \in E(H)$, a contradiction.
(1.2) If $a_{4} \geq 6$, then $a_{4} a_{6} \notin E(H)$ (otherwise, $a_{0}, a_{4}, a_{6}, a_{7}$ induce a $K_{1,3}$), i. e., $4 \leq m-4 \leq a_{6}-$ $a_{4} \leq 4$, thus $m=8, a_{6}-a_{4}=4$, so $a_{4} a_{7} \in E(H)$, and $a_{4}-a_{1} \leq 4$, hence $a_{1} a_{6}, a_{2} a_{6}, a_{3} a_{6} \in E(H)$, a contradiction, too.
(2) Suppose that $a_{4}-a_{0}=6$, then $a_{7}-a_{4}=$ $\left(a_{7}-a_{0}\right)-\left(a_{4}-a_{0}\right) \geq m-4$.
(2.1) Assume that $a_{7}-a_{4} \geq m-3$, then $a_{4} a_{7} \in$ $E(H)$, so $a_{1} a_{4}, a_{4} a_{6} \notin E(H)$, i. e., $a_{4}-a_{1} \leq 4$, $a_{6}-a_{4} \leq 4$, and $a_{1}-a_{0}=\left(a_{4}-a_{0}\right)-\left(a_{4}-a_{1}\right) \geq 2$, thus $3 \leq a_{2}-a_{0} \leq 4$. Hence $5 \leq a_{6}-a_{1} \leq 8$, and $m-3 \leq\left(a_{6}-a_{0}\right)-\left(a_{2}-a_{0}\right)=a_{6}-a_{2}=\left(a_{6}-\right.$ $\left.a_{4}\right)+\left(a_{4}-a_{2}\right) \leq 8$, so $a_{1} a_{6}, a_{2} a_{6} \in E(H)$, then $a_{3} a_{6}, a_{6} a_{7} \notin E(H)$, i. e., $a_{6}-a_{3} \leq 4, a_{7}-a_{6} \leq 4$, thus $4 \leq m-4 \leq a_{6}-a_{2}-1 \leq a_{6}-a_{3} \leq 4$. Therefore, $m=8$, and $a_{6}-a_{3}=4$. Moreover,

$$
\begin{aligned}
& 5 \leq a_{7}-a_{4}<a_{7}-a_{3} \\
& =\left(a_{7}-a_{6}\right)+\left(a_{6}-a_{3}\right) \leq 8,
\end{aligned}
$$

and

$$
\begin{aligned}
& m-3 \leq\left(a_{6}-a_{0}\right)-\left(a_{6}-a_{3}\right) \\
& =a_{3}-a_{0}<a_{4}-a_{0} \leq 8
\end{aligned}
$$

so $a_{0} a_{3}, a_{0} a_{4}, a_{3} a_{7}, a_{4} a_{7} \in E(H)$, i. e., a_{0}, a_{3}, a_{4}, a_{7} form a 4-cycle, a contradiction.
(2.2) Assume that $a_{7}-a_{4}=m-4$. Then

$$
a_{7}-a_{0}=\left(a_{7}-a_{4}\right)+\left(a_{4}-a_{0}\right)=m+2
$$

and $a_{6}-a_{0}=m+1$, so $a_{1}-a_{0}=1, a_{7}-a_{1}=m+1$,

$$
a_{4}-a_{1}=\left(a_{7}-a_{1}\right)-\left(a_{7}-a_{4}\right)=5,
$$

and

$$
a_{6}-a_{1}=\left(a_{6}-a_{0}\right)-\left(a_{1}-a_{0}\right)=m
$$

thus $a_{1} a_{4}, a_{1} a_{5}, a_{1} a_{6} \in E(H)$, a contradiction.
(3) Suppose that $a_{4}-a_{0}=7$, then

$$
a_{7}-a_{4}=\left(a_{7}-a_{0}\right)-\left(a_{4}-a_{0}\right) \geq m-5 .
$$

(3.1) Assume that

$$
a_{7}-a_{4} \geq m-3 .
$$

Then $a_{4} a_{7} \in E(H)$, so $a_{1} a_{4}, a_{4} a_{6} \notin E(H)$, i. e., $a_{4}-a_{1} \leq 4$, and $a_{6}-a_{4} \leq 4$. Hence

$$
a_{1}-a_{0}=\left(a_{4}-a_{0}\right)-\left(a_{4}-a_{1}\right) \geq 3,
$$

and then $a_{2}-a_{0}=4$, and $a_{4}-a_{2}=3$. Thus

$$
5 \leq a_{6}-a_{2}<a_{6}-a_{1} \leq 8
$$

so $a_{1} a_{6}, a_{2} a_{6} \in E(H)$, and then $a_{3} a_{6}, a_{6} a_{7} \notin$ $E(H)$, i. e., $a_{6}-a_{3} \leq 4$, and $a_{7}-a_{6} \leq 4$, hence

$$
\begin{aligned}
& m-3 \leq\left(a_{6}-a_{0}\right)-\left(a_{6}-a_{3}\right) \\
& =a_{3}-a_{0}<a_{4}-a_{0}=7
\end{aligned}
$$

which induces $m=8$, and

$$
5 \leq a_{7}-a_{4}<a_{7}-a_{3}=a_{7}-a_{6}+a_{6}-a_{3} \leq 8
$$

therefore $a_{0}, a_{3}, a_{4}, a_{7}$ form a 4-cycle, a contradiction.
(3.2) Assume that

$$
a_{7}-a_{4}=m-4,
$$

then

$$
a_{7}-a_{0}=\left(a_{7}-a_{4}\right)+\left(a_{4}-a_{0}\right)=m+3,
$$

and

$$
m+1 \leq a_{7}-a_{1} \leq m+2
$$

so

$$
5 \leq\left(a_{7}-a_{1}\right)-\left(a_{7}-a_{4}\right)=a_{4}-a_{1} \leq 6
$$

and $a_{1} a_{4} \in E(H)$, thus $a_{4} a_{7} \notin E(H)$, i. e.,

$$
a_{7}-a_{4}=m-4 \leq 4
$$

that is, $a_{7}-a_{4}=4$, and $m=8$. Clearly, $2 \leq a_{6}-$ $a_{4} \leq 3$, and $1 \leq a_{5}-a_{4} \leq 2$ in this case.
(3.2.1) If $a_{4}-a_{1}=5$, then $a_{1} a_{4}, a_{1} a_{5}, a_{1} a_{6} \in$ $E(H)$, a contradiction.
(3.2.2) If $a_{4}-a_{1}=6$, then $a_{1}-a_{0}=1$, so we have $a_{1} a_{5} \in E(H)$, thus $a_{5}-a_{4}=2$ (otherwise, $a_{5}-a_{4}=1$, and $a_{0}, a_{4}, a_{1}, a_{5}$ induce a 4-cycle), and $a_{7}-a_{6}=a_{6}-a_{5}=1$, hence $a_{0}, a_{2}, a_{3}, a_{4}$ induce a $K_{1,3}$ when $a_{4}-a_{2}=2$, and $a_{2}, a_{5}, a_{6}, a_{7}$ induce a $K_{1,3}$ when $3 \leq a_{4}-a_{2} \leq 4$, a contradiction.
(3.3) Assume that

$$
a_{7}-a_{4}=m-5
$$

Then

$$
\begin{gathered}
a_{7}-a_{0}=\left(a_{7}-a_{4}\right)+\left(a_{4}-a_{0}\right)=m+2, \\
a_{6}-a_{0}=m+1, \text { and } a_{1}-a_{0}=1, \text { so } \\
a_{4}-a_{1}=\left(a_{4}-a_{0}\right)-\left(a_{1}-a_{0}\right)=6, \\
a_{6}-a_{1}=\left(a_{6}-a_{0}\right)-\left(a_{1}-a_{0}\right)=m,
\end{gathered}
$$

and $a_{1} a_{4}, a_{1} a_{5}, a_{1} a_{6} \in E(H)$, a contradiction,too.
(4) Suppose that $a_{4}-a_{0}=8$, then $a_{0} a_{4} \in E(H)$, and $a_{4}-a_{2}=4$ by Claim 3, so $a_{1} a_{4} \in E(H)$,
and thus $a_{4} a_{7} \notin E(H)$, i. e., $a_{7}-a_{4} \leq 4$, hence $a_{2} a_{5}, a_{2} a_{6}, a_{2} a_{7} \in E(H)$, a contradiction.

By two cases above, we have $a_{4}-a_{0} \leq 4$, i. e., $a_{4}-a_{0}=4$. Hence Subclaim 7. 1 holds.

Subclaim $7.2 a_{0}=0$.
Otherwise, we have $a_{0} \geq 1$, and $2 \leq a_{1} \leq 5$ by $a_{7}-a_{1}>m$.
(1) If $a_{1}=5$, then $a_{0}=4, a_{2}=6, a_{3}=7, a_{4}=$ $8, a_{7}=m+6$, and $a_{6}=m+5$, so $a_{1} a_{6}, a_{2} a_{6}, a_{3} a_{6} \in$ $E(H)$, a contradiction.
(2) If $a_{1}=4$, then $a_{0}=3, a_{2}=5, a_{3}=6, a_{4}=$ 7 , and $m+4 \leq a_{6} \leq m+5$,so $a_{2} a_{6}, a_{3} a_{6}, a_{4} a_{6} \in$ $E(H)$, a contradiction.
(3) If $a_{1}=3, a_{0}=2, a_{2}=4, a_{3}=5, a_{4}=6$, then $m+3 \leq a_{6} \leq m+5$, so $a_{3} a_{6}, a_{4} a_{6} \in E(H)$, thus $a_{2} a_{6}, a_{5} a_{6} \notin E(H)$, i. e., $a_{6}-a_{2} \geq m+1$, and $a_{6}-a_{5} \leq 4$, hence $a_{6}=m+5, a_{7}=m+6$, and $a_{5} \geq$ $m+1$. Clearly, $a_{4} a_{7} \in E(H)$, so $a_{4} a_{5} \notin E(H)$, i. e., $9 \leq m+1 \leq a_{5} \leq 10$, thus $a_{0} a_{5}, a_{1} a_{5}, a_{2} a_{5} \in$ $E(H)$, a contradiction.
(4) Suppose that $a_{1}=2$, then $a_{0}=1, a_{2}=3$, $a_{3}=4, a_{4}=5$,

$$
m+2 \leq a_{6} \leq m+5
$$

and

$$
m+3 \leq a_{7} \leq m+6
$$

so $a_{4} a_{6} \in E(H)$, and thus $a_{4} a_{5} \notin E(H)$ or $a_{5} a_{6} \notin$ $E(H)$.
(4.1) Assume that $a_{4} a_{5} \notin E(H)$, then $a_{5}-a_{4} \leq$ 4, i. e., $6 \leq a_{5} \leq 9$.
(4.1.1) If $8 \leq a_{5} \leq 9$, then $a_{0} a_{5}, a_{1} a_{5}, a_{2} a_{5} \in$ $E(H)$, a contradiction.
(4.1.2) If $a_{5}=7$, then $a_{0} a_{5}, a_{1} a_{5} \in E(H)$, so $a_{5} a_{7} \notin E(H)$, i. e.,

$$
11 \leq m+3 \leq a_{7} \leq 11
$$

hence $a_{7}=11, m=8$ and $a_{2} a_{7}, a_{3} a_{7}, a_{4} a_{7} \in$ $E(H)$, a contradiction.
(4.1.3) If $a_{5}=6$, then $a_{0} a_{5}, a_{5} a_{7} \in E(H)$, so $a_{5} a_{6} \notin E(H)$, i. e.,

$$
10 \leq m+2 \leq a_{6} \leq 10
$$

hence $a_{6}=10, m=8$, and $a_{1} a_{6}, a_{2} a_{6}, a_{3} a_{6} \in$ $E(H)$, a contradiction, too.
(4.2) Assume that $a_{4} a_{5} \in E(H)$, and $a_{5} a_{6} \notin$ $E(H)$, then $a_{3} a_{5} \in E(H), a_{6}-a_{5} \leq 4$, so $a_{2} a_{5} \notin$ $E(H)$, i. e., $a_{5} \geq m+4$, hence $a_{5}=m+4=a_{6}-$ $1=a_{7}-2$. Therefore, the remainder $7(q-1)$ vertices $\{0\} \cup[6, m+3]$ in H colored $q-1$ colors, such that each color colored seven consecutive vertices, except some color β colored vertices

$$
0<h_{1}<h_{2}<h_{3}<h_{4}<h_{5}<m+3
$$

but h_{1}, h_{2}, h_{3} are all adjacent to 0 since

$$
6 \leq h_{1}<h_{2}<h_{3} \leq m
$$

a contradiction, too.
Therefore, $a_{0}=0$, and then Subclaim 7.2 is proved.

In a word, we have $a_{4} \leq 4$, and Claim 7 holds.
Claim 8: $a_{6} \geq 7(q-1)+6$, that is, $a_{6}=7 q-1$, and $a_{7}=7 q$.

If $a_{6} \leq 7 q-2$, i. e., $a_{6} \leq m+4$, then $a_{4} a_{6} \in$ $E(H)$, so $a_{4} a_{5} \notin E(H)$ or $a_{5} a_{6} \notin E(H)$.
(1) Suppose that $a_{4} a_{5} \notin E(H)$, then $5 \leq a_{5} \leq$ 8.
(1.1) If $7 \leq a_{5} \leq 8$, then $a_{0} a_{5}, a_{1} a_{5}, a_{2} a_{5} \in$ $E(H)$, a contradiction.
(1.2) If $a_{5}=6$, then $a_{0} a_{5}, a_{1} a_{5} \in E(H)$, so $a_{5} a_{7} \notin E(H)$, and $10 \leq m+2 \leq a_{7} \leq 10$, thus $a_{7}=10, m=8, a_{6}=9$, and $a_{2} a_{7}, a_{3} a_{7}, a_{4} a_{7} \in$ $E(H)$, a contradiction.
(1.3) Assume that $a_{5}=5$, then $a_{0} a_{5} \in E(H)$. If $m+2 \leq a_{7} \leq m+5$, then $a_{5} a_{7} \in E(H)$, so $a_{5} a_{6} \notin E(H)$, i. e., $9 \leq m+1 \leq a_{6} \leq 9$, thus $a_{6}=9, m=8$, and $a_{1} a_{6}, a_{2} a_{6}, a_{3} a_{6} \in E(H)$, a contradiction. Hence $a_{7}=m+6$, and then the remainder $7(q-1)$ vertices $[6, m+5] \backslash\left\{a_{6}\right\}$ in H colored $q-1$ colors, such that each color colored seven consecutive vertices by Claim 1, which is impossible since $m+1 \leq a_{6} \leq m+4$.
(2) Suppose that $a_{4} a_{5} \in E(H)$, and $a_{5} a_{6} \notin$ $E(H)$. Then $a_{3} a_{5} \in E(H)$, so $a_{7}-a_{5} \leq 4$, $a_{6}-a_{3} \geq m+1$, and $a_{5}-a_{2} \geq m+1$, hence $a_{6}=m+4$ and $a_{5}=m+3$. If $a_{7}=m+6$, then the remainder $7(q-1)$ vertices $[5, m+2] \cup\{m+5\}$ in H colored $q-1$ colors, such that each color colored seven consecutive vertices by Claim 1, which is impossible. Hence $a_{7}=m+5$, and the remainder $7(q-1)$ vertices $[5, m+2] \cup\{m+6\}$ in H colored $q-1$ colors, such that each color colored seven consecutive vertices, except some color β colored vertices

$$
5<h_{1}<h_{2}<h_{3}<h_{4}<h_{5}<m+6
$$

but h_{1}, h_{2}, h_{3} are all adjacent to $m+6$ since

$$
6 \leq h_{1}<h_{2}<h_{3} \leq m
$$

a contradiction, too.
Therefore, we have $a_{6}=7 q-1$, and $a_{7}=7 q$.
Claim 9: $a_{5}=5$ or $a_{5}=m+4$.
Assume that

$$
6 \leq a_{5} \leq m+3
$$

If

$$
6 \leq a_{5} \leq m
$$

then $a_{0} a_{5}, a_{1} a_{5}, a_{5} a_{7} \in E(H)$, a contradiction. If

$$
m+1 \leq a_{5} \leq m+2
$$

then $a_{2} a_{5}, a_{3} a_{5}, a_{4} a_{5} \in E(H)$, a contradiction. If $a_{5}=m+3$, then the remainder $7(q-1)$ vertices $[5, m+2] \cup\{m+4\}$ in H colored $q-1$ colors, such that each color colored seven consecutive vertices by Claim 1, which is impossible. Hence Claim 9 holds.

Without loss of generality, suppose that $a_{5}=5$. Then the remainder $7(q-1)$ vertices $[6, m+4]$ in H colored $q-1$ colors, such that each color colored seven consecutive vertices as $(6 \leq) u, u+1, \cdots, u+6$ by Claim 1, hence $m+11, m+12$ would color α and induce a 4-cycle along with a_{6}, a_{7}, a contradiction, too.

In a word, we have shown that

$$
\operatorname{vla}\left(G\left(D_{m, 1,4}\right)\right) \geq\left\lceil\frac{m}{7}\right\rceil+1
$$

Therefore, we obtain that

$$
\operatorname{vla}\left(G\left(D_{m, 1,4}\right)\right)=\left\lceil\frac{m}{7}\right\rceil+1
$$

Acknowledgements: The research is supported by NSFC for youth with code 61103073.

References:

[1] J. Akiyama, H. Era, S. V. Gerracio and M. Watanabe, Path chromatic numbers of graphs, J. Graph Theory, 13, 1989, pp.569-579.
[2] G. J. Chang, D. D.-F. Liu and X. D. Zhu, Distance graphs and T-coloring, J. Combin. Theory, Ser. B, 75, 1999, pp.259-269.
[3] R. B. Eggleton, P. Erdös and D.K. Skilton, Colouring the real line, J. Combin. Theory, Ser. B, 39, 1985, pp.86-100.
[4] R. B. Eggleton, P. Erdös and D.K. Skilton, Colouring prime distance graphs, Graphs and combinatorics, 6,1990, pp.17-32.
[5] W. Goddard, Acyclic coloring of planar graphs, Discrete Mathematics, 91,1991, pp.91-94.
[6] A. Kemnitz and H. Kolbery, Coloring of integer distance graphs, Discrete Mathematics, 191, 1998, pp.113-123.
[7] S. He, L. Zuo, and S. Zhang, The linear k-arboricity of the Mycielski graph $M\left(K_{n}\right)$, WSEAS Transactions on Mathematics, accepted.
[8] Xuejiao Jiang and Yuqin Zhang, Randomly M_{t}-decomposable multigraphs and M_{2-} equipackable multigraphs, WSEAS transactions on Mathematics, 12 (2),2013, pp.211-220.
[9] H. Lai, Y. Shao, and H. Yan, An update supereulerian graphs, WSEAS transactions on Mathematics, 12 (9), 2013, pp.926-940.
[10] D. D.-F. Liu and X. D. Zhu, Distance graphs with missing multiples in the distance sets, J. Graph Theory, 30, 1999, pp.245-259.
[11] M. Matsumoto, Bounds for the vertex linear arboricity, J. Graph Theory, 14,1990, pp.117-126.
[12] K. Poh, On the linear vertex-arboricity of a planar graph, J. Graph Theory, 14,1990, pp.73-75.
[13] M. Voigt and H. Walther, Chromatic number of prime distance graphs, Discrete Applied Mathematics, 51, 1994, pp.197-209.
[14] M. Voigt, Colouring of distaince graphs, Ars Combinatoria, 52,1999, pp.3-12.
[15] L. Zuo, J. Wu and J. Liu, The Vertex Linear Arboricity of an Integer Distance Graph with a Special Distance Set, Ars Combinatoria, 79(2), 2006, pp.65-76.
[16] L. Zuo, J. Wu and J. Liu, The vertex linear arboricity of distance graphs, Discrete Mathematics, 306(2), 2006, pp.284-289.
[17] L. Zuo, Q. Yu and J. Wu, Tree coloring of distance graphs with a real interval set, Applied Mathematics Letter, 19(12), 2006, pp.13411344.
[18] L. Zuo, B. Li and J. Wu, The vertex linear arboricity of a special class of integer distance graphs, Ars Combinatoria, 111, 2013, pp.427444.

[^0]: *The corresponding author.

