The Vertex Linear Arboricity of Integer Distance Graph $G(D_{m,1,4})$

LIANCUI ZUO
College of
Mathematical Science,
Tianjin Normal University,
Tianjin, 300387,
CHINA
lczuo@mail.tjnu.edu.cn

CHUNHONG SHANG*
College of
Mathematical Science,
Tianjin Normal University,
Tianjin, 300387,
CHINA
shangchunhong@eyou.com

YANYUN NIU
College of
Mathematical Science,
Tianjin Normal University,
Tianjin, 300387,
CHINA
1042886859@qq.com

Abstract: An integer distance graph is a graph G(D) with the set Z of all integers as vertex set and two vertices $u,v\in Z$ are adjacent if and only if $|u-v|\in D$, where the distance set D is a subset of positive integers. A k-vertex coloring of a graph G is a mapping f from V(G) to [0,k-1]. A path k-vertex coloring of a graph G is a k-vertex coloring such that every connected component is a path in the induced subgraph of $V_i(1\leq i\leq k)$, where the vertex set V_i is the subset of vertices assigned color i. The vertex linear arboricity of a graph G is the minimum positive integer k such that G has a path k-vertex coloring. In this paper, we studied the vertex linear arboricity of the integer distance graph $G(D_{m,1,4})$, where $D_{m,1,4}=[1,m]\setminus [1,4]$, and proved that $vla(G(D_{m,1,4}))=\left\lceil \frac{m}{7}\right\rceil+1$ for every integer $m\geq 6$.

Key-Words: Integer distance graph; Vertex linear arboricity; Path coloring

1 Introduction

In this paper, R and Z denote the sets of all real numbers and all integers, respectively. For $x \in R$, let $\lfloor x \rfloor$ denote the greatest integer not exceeding x, and $\lceil x \rceil$ denote the least integer not less than x. Let $[m,n] = \{m,\cdots,n\}$ denote the set of all integers from m to n where $m \leq n$ and $[m,n] = \emptyset$ if m > n. |S| denotes the cardinality of a set S and $|S| = +\infty$ means that S is an infinite set.

In recent years, many parameters and graph classes were studied. For examples, He et al. in [7] obtained the linear k-arboricity of the Mycielski graph $M(K_n)$, Lai et al.in [9] gave a survey for the more recent developments of the research on supereulerian graphs and the related problems, and Jiang and Zhang in [8] studied Randomly M_t -decomposable multigraphs and M_2 -equipackable multigraphs.

Coloring of graphs is one of the most fascinating and well-studied topic in graph theory. The problem can be traced back to the Four Color Conjecture. It was motivated by application problems as the frequency assignment problem (e.g., L(2,1)-labeling and the multi-level distance labeling), the control of traffic signals (e.g., circular coloring) and other problems from wide range of industrial and technology areas. A vertex coloring can be viewed as a function from V to Z. More precisely, a vertex k-coloring of

a graph G is a mapping f from V(G) to [1,k]. Given a vertex k-coloring, let V_i denote the set of all vertices of G which colored with i, and $\langle V_i \rangle$ denote the subgraph induced by V_i in G. If V_i is an independent set for every $1 \leq i \leq k$, then f is called a proper k-coloring. The chromatic number $\chi(G)$ of a graph G is the minimum integer k for which G has a proper k-coloring. If V_i induces a subgraph whose connected components are paths, then f is called a path k-coloring. The $vertex\ linear\ arboricity$ of a graph G, denoted by vla(G), is the minimum number k such that G has a path k-coloring. Clearly, $\chi(G) \geq vla(G)$ for any graph G.

Matsumoto [11] proved that for a finite graph G,

$$vla(G) \leq \lceil \frac{\Delta(G) + 1}{2} \rceil;$$

moreover, if $\Delta(G)$ is even, then

$$vla(G) = \lceil \frac{\Delta(G) + 1}{2} \rceil$$

if and only if G is a complete graph of order $\Delta(G) + 1$ or a cycle. Goddard [5] and Poh [12] proved that $vla(G) \leq 3$ for a planar graph G. Akiyama et al. [1] proved that $vla(G) \leq 2$ if G is an outerplanar graph.

Let S be a subset of real numbers and D a set of positive real numbers. Then $distance\ graph\ G(S,D)$ has the vertex set S and two real numbers x and y are adjacent if and only if $|x-y| \in D$, where the set

^{*}The corresponding author.

D is called the distance set. In particular, if all elements of D are positive integers and S = Z, then the graph G(Z, D), or G(D) in short, is called *integer dis*tance graph. The distance graphs were introduced by Eggleton et al.[3] in 1985 to study the chromatic number. They proved that $\chi(G(R,D)) = n+2$, where D is an interval between 1 and δ , and n satisfies $1 \le n \le n$ $\delta \leq n+1$. They also partially determined the values of $\chi(G(D_{m,k}))$, where $D_{m,k} = [1,m] \setminus \{k\}$. The complete solution to $\chi(G(D_{m,k}))$ is provided by Chang et al.in [2]. Many peoples discussed the chromatic number of integer distance graph G(D). More results on the chromatic number of integer distance graphs, see [3, 4, 6, 10, 13] and [14]. In [16] and [17], it is considered that vertex linear arboricity of the real distance graphs. In [15], it is studied that the vertex linear arboricity of $G(D_{m,k})$ where $D_{m,k} = [1,m] \setminus \{k\}$. In [18], it is obtained that $vla\left(G\left(D_{m,1,3}\right)\right) = \left\lceil \frac{m}{6} \right\rceil + 1$.

Now the integer distance graph is applied widely to gene sequence, sequential series, on-line computing and so on.

Let $D_{m,1,4} = [1,m] \setminus \{1,2,3,4\}$. In this paper, we shall prove that

$$vla\left(G\left(D_{m,1,4}\right)\right) = \left\lceil \frac{m}{7} \right\rceil + 1$$

for $m \geq 6$.

2 Main results

For m = 5, $D_{5,1,4} = \{5\}$, so we have

$$vla(G(D_{5,1,4})) = 1.$$

For $6 \le m \le 7$, let n=14l+j, f(n)=0 if $0 \le j < 7$, and f(n)=1 if $7 \le j < 14$. Then f is a path coloring, and thus

$$vla(G(D_{m,1,4})) \leq 2.$$

Since vertices 0, 5, 10, 15, 20, 25, 30, 24, 18, 12, 6, 0 in $G(D_{m,1,4})$ induce a cycle, we obtained that

$$vla(G(D_{m,1,4})) = 2.$$

Theorem 1. For any integer $m \geq 8$, we have

$$vla\left(G\left(D_{m,1,4}\right)\right) = \left\lceil \frac{m}{7} \right\rceil + 1.$$

Proof. At first we give a path coloring of $G(D_{m,1,4})$. Let f(n) = i for $n = 7i + j, 0 \le j \le 6, 0 \le i \le \lceil \frac{m}{7} \rceil$, and for any integer t, let

$$f\left(7t\left(\left\lceil\frac{m}{7}\right\rceil+1\right)+n\right)=f\left(n\right).$$

Then f is a path coloring, and

$$vla\left(G\left(D_{m,1,4}\right)\right) \leq \left\lceil \frac{m}{7} \right\rceil + 1.$$

In the following, we shall show that

$$vla\left(G\left(D_{m,1,4}\right)\right) \geq \left\lceil \frac{m}{7} \right\rceil + 1$$

by contradiction approach.

Assume that the result is not right, that is,

$$vla\left(G\left(D_{m,1,4}\right)\right) \leq \left\lceil \frac{m}{7} \right\rceil = q,$$

then $G\left(D_{m,1,4}\right)$ has a path q-coloring f. Clearly, f is also a path q-coloring of the subgraph H induced by vertex subset [0,7q] of $G\left(D_{m,1,4}\right)$. Note that $|V\left(H\right)|=7q+1$. Hence there are at least eight vertices

$$(0 \le) a_0 < a_1 < \cdots < a_7 (\le 7q)$$

with the same color α .

Claim 1: If $a_6 - a_0 \le m$, then

$$a_6 = a_5 + 1 = a_4 + 2 = a_3 + 3$$

= $a_2 + 4 = a_1 + 5 = a_0 + 6$.

Otherwise, there is some $0 \le i \le 5$ such that

$$a_{i+1} - a_i > 1$$
,

then a_0a_6 , a_0a_5 , $a_0a_4 \in E(H)$ or a_0a_6 , a_1a_6 , $a_2a_6 \in E(H)$, i. e., a_0, a_4, a_5, a_6 form a $K_{1,3}$, or a_0, a_1, a_2, a_6 form a $K_{1,3}$, a contradiction. Hence Claim 1 holds.

Claim 2: $\min \{a_6 - a_0, a_7 - a_1\} > m$.

Assume that $a_6 - a_0 \le m$, then by Claim 1, we can obtain that

$$a_6 = a_5 + 1 = a_4 + 2 = a_3 + 3$$

= $a_2 + 4 = a_1 + 5 = a_0 + 6$,

so $a_0a_6, a_0a_5, a_1a_6 \in E(H)$, thus $a_0a_7, a_6a_7 \notin E(H)$. Therefore $a_7-a_0>m$, and $a_7-a_6=t\leq 4$ or $a_7-a_6>m$. If $a_7-a_6=t\leq 4$, then $a_2a_7, a_3a_7, a_4a_7\in E(H)$ when $3\leq a_7-a_6\leq 4$, and $a_0a_7, a_1a_7, a_2a_7\in E(H)$ when $1\leq a_7-a_6\leq 2$, a contradiction. Hence $a_7-a_6>m$, so $a_7\geq a_6+m+1\geq m+7>7q$, a contradiction, too.

Therefore $a_6 - a_0 > m$. Similarly, $a_7 - a_1 > m$. Thus Claim 2 is proved.

By Claim 2, we have $m \leq 7q - 2$.

Claim 3: If $a_i a_{i+j} \in E(H)$ for some $j \geq 3$, then

$$a_i a_{i+j-2}, a_{i+2} a_{i+j}, a_{i+1} a_{i+j-1} \notin E(H)$$
.

Otherwise, if $a_i a_{i+j-2} \in E(H)$, then

$$5 \le a_{i+j-2} - a_i < a_{i+j-1} - a_i < a_{i+j} - a_i \le m$$

so $a_i, a_{i+j-2}, a_{i+j-1}, a_{i+j}$ form a $K_{1,3}$, a contradiction. Thus $a_i a_{i+j-2} \notin E(H)$. Similarly, $a_{i+2} a_{i+j} \notin E(H)$. If $a_{i+1} a_{i+j-1} \in E(H)$, then $a_i, a_{i+j-1}, a_{i+1}, a_{i+j}$ form a 4-cycle, a contradiction, too.

Claim 4: There are at most eight vertices in H with the same color.

Otherwise, assume that there are nine vertices

$$(0 \le) a_0 < a_1 < \dots < a_8 (\le 7q)$$

with the same color α , then $a_{i+6}-a_i>m$ by Claim 2, so $a_i\in [i,i+3]$, and $a_{i+6}\in [m+i+1,m+i+4]$ where $i\in [0,2]$.

(1)If $a_2=5$, then $a_8=m+6, m=7(q-1)+1$, and $a_2a_7\in E(H)$. Moreover, by Claim 3, $a_2a_5, a_4a_7\notin E(H)$, i. e., $3\leq a_5-a_2\leq 4$, and $3\leq a_7-a_4\leq 4$, so $8\leq a_5\leq 9$, and $a_4\geq a_7-4\geq m-2$, thus m=8, $7\leq a_4\leq 8$ and $10\leq a_7\leq 12$. Hence a_3,a_4,a_5,a_8 form a $K_{1,3}$, a contradiction.

(2) If $a_2=4$, then we have $a_8\geq m+5, \ m=7(q-1)+j, 1\leq j\leq 2,$ and $a_2a_6\in E(H).$ By Claim 3, $a_2a_4, a_4a_6\notin E(H),$ so

$$m-3 \le a_6 - a_2 \le 8$$
,

and $6 \le a_4 \le 8$, thus $m \in [8, 9]$, $9 \le a_6 \le 12$, and $m + 5 \le a_8 \le m + 6$. If $a_2 a_7 \in E(H)$, then $a_2a_5 \notin E(H)$, i. e., $a_5 - a_2 \le 4$, and $7 \le a_5 \le 8$, so $a_5a_8, a_4a_8 \in E(H)$, thus $a_3a_8 \notin E(H)$, hence $a_3 = 5$, $a_8 = m + 6$, and m = 8. Moreover, $a_3a_7 \in E(H)$, and then $a_3a_6, a_4a_7 \notin E(H)$ (otherwise, a_2 , a_6 , a_3 , a_7 form a cycle, or a_2 , a_3 , a_4 , a_7 form a $K_{1,3}$), that is, $a_6 = 9, a_7 \le a_4 + 4 \le 11$, thus a_1, a_2, a_6, a_8 form a $K_{1,3}$, a contradiction. Therefore $a_2a_7 \notin E(H)$, i. e., $a_7 = m + 5$, $a_8 = m + 6$, then m = 8 since j = 1, and $a_4a_7, a_4a_8 \in E(H)$, so $a_3 =$ 5 (otherwise, a_3, a_7, a_4, a_8 form a 4-cycle), and then $a_5 \ge 9$ (otherwise, a_4, a_7, a_5, a_8 form a 4-cycle), thus $a_2a_5, a_3a_6, a_3a_7 \in E(H), \text{ and } a_3a_5 \notin E(H), \text{that is,}$ $a_5 = 9$, but $a_2, a_5, a_8, a_4, a_7, a_3, a_6$ form a 7-cycle in this case, a contradiction, too.

(3)Assume that $a_2 = 3$. By Claim 2, it is easy to know that

$$m = 7(q-1) + j$$

with $1 \le j \le 3$.

Suppose that $a_2a_6 \in E(H)$, then, by Claim 3, $a_2a_4, a_4a_6, a_3a_5 \notin E(H)$, so $m-2 \leq a_6-a_2 \leq 8$, $a_5-a_3 \leq 4$, and $5 \leq a_4 \leq 7$, thus $m \in [8,10]$, $9 \leq a_6 \leq 11$, and $m+4 \leq a_8 \leq m+6$ by Claim 2. If $a_2a_7 \in E(H)$, then $a_2a_5 \notin E(H)$, i. e., $a_5-a_2 \leq 4$ and $6 \leq a_5 \leq 7$, so $a_0a_5, a_5a_8 \in E(H)$, thus $a_5-a_1=4, a_5=6$, and $a_7 \leq a_5+4=10$, hence $a_7=a_6+1=10$, that is, m=8, and a_2,a_3,a_4,a_7 form a $K_{1,3}$, a contradiction. Therefore, $a_2a_7 \notin E(H)$, i. e., $a_7 \geq m+4, a_8 \geq m+5$,

thus $j \leq 2$, and $a_4a_7 \in E(H)$, so $a_3a_7 \notin E(H)$ or $a_5a_7 \notin E(H)$, i. e., $a_3 = 4$ and $a_7 = m + 5$, or $a_7 - a_5 \leq 4$. In the former case, $a_3a_6 \in E(H)$, $6 \leq a_5 \leq 8$, so a_0, a_5, a_7, a_8 form a $K_{1,3}$, a contradiction. In the latter case, we may suppose that $a_3a_7 \in E(H)$, then $a_2a_5 \in E(H)$ (otherwise, $5 \leq a_5 \leq 7$, then $a_7 \leq a_5 + 4 \leq 11$, which contradicts $a_7 \geq m + 4$), so $a_5a_8, a_1a_6, a_0a_5 \notin E(H)$ (otherwise, a_1, a_2, a_5, a_8 form a $K_{1,3}$, or a_1, a_5, a_2, a_6 form a cycle, or a_0, a_1, a_2, a_5 form a $K_{1,3}$), then $a_4a_8 \in E(H)$ (otherwise, $a_4 = 5$ and $a_8 = m + 6$, so $a_3 = 4$, and $a_5 \leq 8$ which contradicts $a_5a_8 \notin E(H)$), thus $a_0a_4 \notin E(H)$ (otherwise, a_0, a_4, a_7, a_8 form a $K_{1,3}$), that is, $a_4 = a_0 + 4$, hence $a_4a_6 \in E(H)$, and a_4, a_6, a_7, a_8 form a $K_{1,3}$, a contradiction, too.

Suppose that $a_2a_6 \notin E(H)$, then $a_6 = m +$ $4, a_7 = m + 5, a_8 = m + 6, \text{ and } m = 7(q - 1) + 1,$ so $a_2a_5 \in E(H)$ (otherwise, a_5, a_6, a_7, a_8 form a $K_{1,3}$), and $a_2a_3, a_3a_4, a_4a_5 \notin E(H)$ by Claim 3, thus $a_3 \leq 7$, and $a_5a_7 \notin E(H)$ (otherwise, a_2, a_5, a_7, a_8 form a $K_{1,3}$), i. e., $a_5 \ge m + 1$. If $a_2 a_4 \notin E(H)$, then $a_4 = 5$ (otherwise, $6 \le a_4 \le 7$ and a_4, a_6, a_7, a_8 form a $K_{1,3}$), thus, $a_5 = 9$ and m = 8, hence a_1, a_2, a_5, a_8 form a $K_{1,3}$, a contradiction. Therefore, $a_2a_4 \in E(H)$, so $a_1a_5, a_0a_4 \notin E(H)$ (otherwise, a_1, a_4, a_2, a_5 form a 4-cycle, or a_0, a_1, a_2, a_4 form a $K_{1,3}$), thus $a_4 \ge m+1$, $a_5-a_1 \ge m+1$, and $a_3 a_8 \notin E(H)$ (otherwise, a_3, a_6, a_7, a_8 form a $K_{1,3}$), i. e., $4 \le a_3 \le 5$, and m = 8. Moreover, $a_4 = 9$ and $a_3 = 5$, then a_3, a_5, a_6, a_7 form a $K_{1,3}$, a contradiction, too.

(4) Suppose that $a_2=2$. Then $a_1=1$, and $a_0=0$.

If $a_2a_6 \in E(H)$, then $m+1 \le a_6 \le m+2$, $a_5-a_3 \le 4, m-3 \le a_6-4 \le a_4 \le 6, a_8 \ge m+3$ by Claims 2-3, thus $a_0a_4 \in E(H)$, and $m \in [8,9]$. Moreover, $a_1a_4 \notin E(H)$ or $a_4a_7 \notin E(H)$, i. e., $a_4=5$, or $a_4=6$ and $a_7=m+2=10$. In the former case, it is obvious that a_0,a_1,a_5,a_8 induce a $K_{1,3}$ if $a_5=6,\ a_0,a_1,a_2,a_5$ induce a $K_{1,3}$ if $a_5=m+1$, a contradiction. In the latter case, a_0,a_1,a_4,a_8 induce a $K_{1,3}$, a contradiction.

Suppose that $a_2a_6 \notin E(H)$, i. e., $a_6 \ge m+3$. If $a_2a_5 \in E(H)$, then $a_5 \ge m+1$ (otherwise, a_0, a_1, a_2, a_5 induce a $K_{1,3}$), so $a_3 \le 6$ and $a_4 \ge a_5 - 4$ by Claim 3, thus $a_3 \le 4$ (otherwise, a_0, a_3, a_6, a_7 induce a $K_{1,3}$ if $a_3 = 5$, and a_0, a_1, a_3, a_8 induce a $K_{1,3}$ if $a_3 = 6$), hence $a_3a_5 \in E(H)$, $a_5 \ge m+2$ and $a_4 \ge a_5 - 4 \ge m-2$ by $a_1a_5, a_4a_5 \notin E(H)$, therefore a_0, a_1, a_4, a_8 induce a $K_{1,3}$ if $a_4 = 6$, a_0, a_1, a_2, a_4 induce a $K_{1,3}$ if $a_4 \le m$, and a_2, a_4, a_3, a_5 induce a cycle if $a_4 > m$, a contradiction. If $a_2a_5 \notin E(H)$, then $a_5 \le 6$ or $a_5 \ge m+3$. In the former case, $a_0a_5 \in E(H)$, and $a_5a_7 \notin E(H)$

or $a_5a_8 \notin E(H)$, so $a_5=6$, $a_7=10$ and m=8, or $a_5=5$ and $a_8=m+6$, hence a_0,a_1,a_5,a_8 induce a $K_{1,3}$, or a_0,a_5,a_6,a_7 induce a $K_{1,3}$, a contradiction. In the latter case, $a_5=m+3=a_6-1=a_7-2=a_8-3$, then $a_4=4$ or $a_4=m+2$ (otherwise, a_4,a_5,a_6,a_7 induce a $K_{1,3}$ when $a_4=5$, a_0,a_1,a_4,a_8 induce a $K_{1,3}$ when $6\leq a_4\leq m$, and a_1,a_2,a_4,a_8 induce a $K_{1,3}$ when $a_4=m+1$). If $a_4=4$, then every color colored seven consecutive vertices except α and some color β that colored

$$b_5 > b_4 > b_3 > b_2 > b_1 > b_0 (> 5)$$

in H, so vertices m+8, m+9, m+10 receive color β and are all adjacent to b_5 , a contradiction. If $a_4=m+2$, then $a_3=3$ (otherwise, a_3,a_4,a_5,a_6 induce a $K_{1,3}$ when $4\leq a_3\leq m-3$, a_0,a_1,a_3,a_8 induce a $K_{1,3}$ when $m-2\leq a_3\leq m$, and a_1,a_2,a_3,a_8 induce a $K_{1,3}$ when $a_3=m+1$), thus every color colored seven consecutive vertices except α and some color β that colored

$$(m+1 \ge)b_5 > b_4 > b_3 > b_2 > b_1 > b_0 (\ge 4)$$

in H, so vertices -4, -3, -2 receive color β and are all adjacent to b_0 , a contradiction, too.

Hence Claim 4 holds.

Claim 5: In H, if

$$b-a = 7(q-1)-2, t \ge m+1,$$

 $a+t-b > 1 (i.e., b-t < a-1)$

and 7(q-1) vertices in $[a,b] \cup \{a+t\}$ (or $\{b-t\} \cup [a,b]$) colored q-1 colors, then a and a+t (or a and b-t) have the same color.

Assume that a and a+t have different colors, then, by Claim 1, each color colored consecutive seven vertices, which is impossible. Similarly, a and b-t have the same color.

Claim 6: m = 7(q - 1) + 1. Suppose that

$$m > 7(q-1) + 2 > 9$$
.

By Claim 2, $a_6-a_0>m$ and $a_7-a_1>m$. Then there is $1\leq h\leq 5$ such that $a_h-a_0\leq m$, and $a_{h+1}-a_0>m$.

Case 1. h = 1.

Then $a_1 - a_0 \le m$, and $a_2 - a_0 > m$, so

$$a_7 - a_2 \le 7q - (m+1) \le (m+5) - (m+1) \le 4$$

which contradicts $a_7 - a_2 > 5$.

Case 2. h = 2.

We have $a_2 - a_0 \le m, a_3 - a_0 > m$, and

$$a_7 - a_3 \le 7q - (m+1) \le 4$$

in this case, so $a_7 - a_3 = 4$, i. e., $a_3 = m + 1$, $a_7 = a_6 + 1 = a_5 + 2 = a_4 + 3 = a_3 + 4 = 7q$, m = 7(q - 1) + 2, and $a_0 = 0$. Since $a_7 - a_1 > m$,

$$a_1 \le a_7 - (m+1) \le (m+5) - (m+1) \le 4$$

that is, $1 \le a_1 \le 4$, then $a_1 a_3 \in E(H)$.

If $a_1 = 1$, then the remainder 7(q - 1) vertices $[2, m] \setminus \{a_2\}$ in H colored q - 1 colors by Claim 1, such that each color colored seven vertices as

$$u(>2), u+1, u+2, u+3, u+4, u+5, u+6,$$

by Claim 2, so m+6 and m+7 would color α , but they form a $K_{1,3}$ with a_3 , a_1 , a contradiction.

If $2 \le a_1 \le 4$, then the remainder 7(q-1) vertices $[1,m] \setminus \{a_1,a_2\}$ in H colored q-1 colors, by Claim 1, each color would color consecutive seven vertices, which is impossible.

Case 3. h = 3.

We have $a_3 - a_0 \le m, a_4 - a_0 > m$, so

$$m+1 \le a_4 \le m+2$$
,

and $0 \le a_0 \le 1$. By $a_7 - a_1 > m$, we can obtain that $1 \le a_1 \le 4$.

(1) If $a_4 = m + 2$, then

$$a_7 = a_6 + 1 = a_5 + 2 = a_4 + 3 = 7q$$

and m = 7(q-1) + 2.

(1.1) Assume that $2 \le a_1 \le 4$, then $a_1a_4 \in E(H)$, so a_1a_2 , $a_3a_4 \notin E(H)$ by Claim 3, i. e., $a_2 - a_1 \le 4$, and $a_4 - a_3 \le 4$, thus $m\text{-}2 \le a_3 \le m+1$. If

$$m-2 \le a_3 \le m$$
,

then $a_0a_3, a_3a_7 \in E(H)$, so $a_3a_6 \notin E(H)$, i. e., $a_6-a_3 \leq 4$, thus $a_3 \geq a_6-4 \geq m$, moreover $a_3=m$, and $a_1a_3 \in E(H)$, hence a_0, a_1, a_3, a_7 form a $K_{1,3}$, a contradiction. Therefore, $a_3=m+1$, and $a_0=1$, then $a_0a_3, a_1a_3 \in E(H)$, so $a_1a_5 \notin E(H)$, i. e., $a_5-a_1 > m$, and $a_1 \leq a_5 - (m+1) \leq 2$, thus $a_1=2$. Hence the remainder 7(q-1) vertices

$$\{0\} \cup [3, m] \setminus \{a_2\}$$

in H colored q-1 colors, by Claim 1, each color colored seven consecutive vertices, which is impossible.

(1.2) Assume that $a_1 = 1$, then $a_0 = 0$, and $3 \le a_3 \le m$. If $6 \le a_3 \le m$, then $a_0a_3, a_1a_3, a_3a_7 \in E(H)$, a contradiction. If $4 \le a_3 \le 5$, then $a_3a_4, a_3a_5, a_3a_6 \in E(H)$, a contradiction. Hence

 $a_3=3$, and $a_2=2$, so the remainder 7(q-1) vertices [4,m+1] in H colored q-1 colors such that each color colored seven vertices as

$$u(\ge 4), u + 1, u + 2, u + 3, u + 4, u + 5, u + 6$$

by Claim 1, then by Claim 2, m+9 would color α and form a $K_{1,3}$ with a_4 , a_5 , a_6 , a contradiction.

(2) Suppose that $a_4=m+1$. Then $a_0=0$, and $a_1a_4\in E(H)$, so a_1a_2 , $a_3a_4\notin E(H)$ by Claim 3, i. e., $a_2-a_1\leq 4$, and $a_4-a_3\leq 4$, thus $m-3\leq a_3\leq m$. If $m-3\leq a_3\leq m-1$, then a_0a_3 , $a_3a_7\in E(H)$, so a_1a_3 , $a_3a_6\notin E(H)$, i. e., $a_3-a_1\leq 4$, and $a_6-a_3\leq 4$, thus $a_3\geq a_6-4\geq m-1$, and $a_3=m-1$, $a_1\geq a_3-4\geq m-5\geq 4$, hence $a_1=4$, and a_1,a_4,a_5,a_6 induce a $K_{1,3}$, a contradiction. Therefore, $a_3=m$, and $a_0a_3,a_1a_3\in E(H)$, so $a_2a_3,a_3a_7\notin E(H)$, that is, $a_7-a_3=4$, and then $a_7=m+4$, $a_6=m+3$, $a_5=m+2$, and $m-4\leq a_2\leq m-1$. Moreover, $a_0a_2,a_2a_7\in E(H)$, so $a_1a_2,a_2a_6\notin E(H)$, i. e., $a_6-a_2=4$, and $a_2-a_1\leq 4$, hence $a_2=m-1$, and $a_1=4$, thus $a_7-a_1=m$ which contradicts Claim 2.

Case 4. h = 4.

We have $a_4 - a_0 \le m$, and $a_5 - a_0 > m$, so $m+1 \le a_5 \le m+3$, and $0 \le a_0 \le 2$.

Assume that $a_4-a_0=4$. If $a_0=2$, then $a_1=3$, $a_2=4$, $a_3=5$ and $a_4=6$, so $a_1a_5, a_2a_5, a_3a_5\in E(H)$, a contradiction. If $a_0=1$, then $a_1=2$, $a_2=3$, $a_3=4$ and $a_4=5$, so $a_2a_5, a_3a_5, a_4a_5\in E(H)$, a contradiction. If $a_0=0$, then $a_1=1$, $a_2=2$, $a_3=3$, $a_4=4$,thus $a_2a_5, a_3a_5, a_4a_5\in E(H)$ when $m+1\leq a_5\leq m+2$, so $a_5=m+3$, $a_6=m+4$, and $a_7=m+5$. The remainder at least 7(q-1) vertices [5,m+2] in H are colored q-1 colors such that each color colored seven vertices as

$$u(\geq 5), u + 1, u + 2, u + 3, u + 4, u + 5, u + 6,$$

by Claim 1, hence m+10 would color α by Claim 2 and be adjacent to a_5 , a_6 , a_7 , a contradiction.

Therefore, $5 \le a_4 - a_0 \le m$, so $a_0 a_4 \in E(H)$, then, by Claim 3, $a_0 a_2$, $a_2 a_4 \notin E(H)$, i. e., $a_2 - a_0 \le 4$, and $a_4 - a_2 \le 4$, thus $5 \le a_4 - a_0 \le 8$.

(1) If $a_4 - a_0 = 5$, then $5 \le a_4 \le 7$, so $a_4 a_7 \in E(H)$, thus $a_4 a_6 \notin E(H)$, i. e., $a_6 - a_4 \le 4$, and

$$11 \le m + 2 \le a_6 \le 11.$$

Hence m = 9, $a_6 = 11$, $a_5 = 10$, $a_4 = 7$, and $a_0 = 2$, so $a_0 a_6 \in E(H)$ which contradicts Claim 2.

(2) If $a_4 - a_0 = 6$, then $a_6 - a_0 \ge m + 2$ by $a_5 - a_0 > m$, so

$$5 \le m - 4 \le (a_6 - a_0) - (a_4 - a_0)$$

= $a_6 - a_4 < a_7 - a_4 < m$,

Thus a_0, a_4, a_6, a_7 induce a $K_{1,3}$, a contradiction.

(3) If $a_4-a_0=7$, then $3 \le a_4-a_2 \le 4$, $a_7-a_0 \ge m+3$ by $a_5-a_0 > m$, thus

$$5 \le m - 4 \le (a_7 - a_0) - (a_4 - a_0)$$

= $a_7 - a_4 \le m$.

Hence $a_4a_7 \in E(H)$, so $a_1a_4, a_4a_6 \notin E(H)$, that is, $a_6 - a_4 \le 4$, and $3 \le a_4 - a_1 \le 4$, then

$$11 \le m + 2 \le a_6 - a_0$$

= $(a_6 - a_4) + (a_4 - a_0) \le 11$.

Therefore, $a_6 - a_0 = 11$, m = 9, $a_5 - a_0 = 10$, $a_4 - a_1 = 4$, and $a_4 - a_2 = 3$, so $a_1a_5, a_1a_6, a_2a_5, a_2a_6 \in E(H)$, i. e., a_1, a_2, a_5, a_6 form a 4-cycle, a contradiction.

(4) If $a_4-a_0=8$, then $a_4-a_2=a_2-a_0=4$, so $a_1a_4\in E(H)$, thus $a_4a_7\notin E(H)$, i. e., $a_7-a_4\leq 4$, hence $a_7-a_2\leq 8$, and $a_2a_5,a_2a_6,a_2a_7\in E(H)$, a contradiction, too.

Case 5. h = 5.

We have $a_5-a_0\leq m$, and $a_6-a_0>m$, then $a_0a_5\in E(H)$, so $a_0a_3,a_1a_4,a_2a_5\notin E(H)$ by Claim 3, i. e., $3\leq a_3-a_0\leq 4,\,a_4-a_1\leq 4,$ and $3\leq a_5-a_2\leq 4,$ hence $2\leq a_2-a_0\leq 3,$ moreover, $5\leq a_5-a_0\leq 7,\,4\leq a_4-a_0\leq 6,\,1\leq a_1-a_0\leq 2,$ and

$$m+1 \le a_6 \le m+4$$
.

- (1) If $a_6=m+1$, then $a_0=0$. Hence $1 \le a_1 \le 2, 2 \le a_2 \le 3$, and $3 \le a_3 \le 4$, so $a_1a_6, a_2a_6, a_3a_6 \in E(H)$, a contradiction.
- (2) Assume that $a_6=m+2$, then $0 \le a_0 \le 1$. If $a_0=0$, then $3 \le a_3 \le 4$, $4 \le a_4 \le 6$, and $2 \le a_2 \le 3$, so $a_2a_6, a_3a_6, a_4a_6 \in E(H)$, a contradiction. If $a_0=1$, then $2 \le a_1 \le 3$, $3 \le a_2 \le 4$, and $4 \le a_3 \le 5$, so $a_1a_6, a_2a_6, a_3a_6 \in E(H)$, a contradiction.
- (3) Assume that $a_6=m+3$, then $0 \le a_0 \le 2$. If $a_0=0$, then $5 \le a_5 \le 7$, so $a_5a_6, a_5a_7 \in E(H)$, thus a_0,a_5,a_6,a_7 induce a $K_{1,3}$, a contradiction. If $a_0=1$, then $4 \le a_3 \le 5$, $3 \le a_2 \le 4$, and $5 \le a_4 \le 7$, then $a_2a_6,a_3a_6,a_4a_6 \in E(H)$; if $a_0=2$, then $3 \le a_1 \le 4$, $4 \le a_2 \le 5$, and $5 \le a_3 \le 6$, so $a_1a_6,a_2a_6,a_3a_6 \in E(H)$, a contradiction, too.
- (4) Assume that $a_6=m+4$, then $a_7=m+5$, and $0 \le a_0 \le 3$. If $0 \le a_0 \le 1$, then $5 \le a_5 \le 8$, and $a_5a_6, a_5a_7 \in E(H)$, so a_0, a_5, a_6, a_7 form a $K_{1,3}$, a contradiction. If $a_0=2$, then $4 \le a_2 \le 5$, $5 \le a_3 \le 6$, and $6 \le a_4 \le 8$, so $a_2a_6, a_3a_6, a_4a_6 \in E(H)$, a contradiction. Hence $a_0=3$, $5 \le a_2 < a_3 \le 7$, and $7 \le a_4 \le 9$, then $a_2a_7, a_3a_7, a_4a_7 \in E(H)$, a contradiction, too.

Therefore, we have

$$m = 7(q - 1) + 1,$$

and thus Claim 6 holds.

Claim 7: $a_4 \le 4$, that is, $a_0 = 0$, $a_1 = 1$, $a_2 = 2$, $a_3 = 3$, and $a_4 = 4$.

Subclaim 7.1 $a_4 - a_0 = 4$.

Otherwise, $a_4 - a_0 > 4$. We shall get a contradiction according to the related positions of a_4 and a_0 .

Case 1. $a_4 - a_0 > m$.

There is $1 \le h < 4$, such that $a_h - a_0 \le m$, and $a_{h+1} - a_0 > m$. By Claim 2, it is easy to see that $2 \le h \le 3$.

- (1) Suppose that h=2, then $a_2-a_0 \le m$, and $a_3-a_0 > m$, so $m+1 \le a_3 \le m+2$. By $a_7-a_1 > m$, we have $1 \le a_1 \le 5$.
- (1.1) Assume that $a_3 = m + 1$, then $a_0 = 0$. If $1 \leq a_1 \leq 4$, then $a_1a_3 \in E(H)$, and thus $a_2a_3 \notin$ E(H) or $a_3a_7 \notin E(H)$. If $a_2a_3 \notin E(H)$, then $a_3 - a_2 \le 4$, i. e., $m - 3 \le a_2 \le m$, so $a_0 a_2$, $a_2a_6, a_2a_7 \in E(H) \text{ when } m-2 \leq a_2 \leq m-1,$ and $a_0a_2, a_2a_4, a_2a_5 \in E(H)$ when $a_2 = m - 3$, a contradiction. Hence $a_2 = m$, so a_0a_2 , $a_2a_7 \in$ E(H), thus $a_1a_2, a_2a_6 \notin E(H)$, i. e., $a_6-a_2=4$ and $4 \le m - 4 \le a_2 - 4 \le a_1 \le 4$. Moreover, m = 8, $a_1 = 4$, $a_6 = m + 4$, $a_5 = m + 3$, $a_4 =$ m+2, and a_1a_4 , a_1a_5 , $a_1a_6 \in E(H)$, a contradiction. Therefore, $a_2a_3 \in E(H)$, then $a_3a_7 \notin E(H)$, i. e., $a_7 - a_3 = 4$, and $a_3 - a_2 \ge 5$, so $2 \le a_2 \le m - 4$, $a_7 = m + 5, a_6 = m + 4, a_5 = m + 3, \text{ and } a_4 =$ m+2. If $3 \le a_2 \le m-4$, then a_2, a_3, a_4, a_5 induce a $K_{1,3}$, a contradiction. Hence $a_2 = 2$, $a_1 = 1$, and $a_2a_4 \in E(H)$, so the remainder 7(q-1) vertices $[3, m] \cup \{m+6\}$ in H colored q-1 colors. By Claim 5, there is some color β colored seven vertices

$$3 = h_0 < h_1 < h_2 < h_3 < h_4 < h_5 < h_6 = m + 6$$
,

but h_3, h_4, h_5 are all adjacent to m+6 since $6 \le h_3 < h_4 < h_5 \le m$, a contradiction.

Therefore, $a_1=5$, and $a_7=m+6$, then $a_0a_1,a_1a_5,a_1a_6\in E(H)$, a contradiction, too.

- (1.2) Assume that $a_3 = m + 2$, then $a_4 = m + 3$, $a_5 = m + 4$, $a_6 = m + 5$, and $a_7 = m + 6$.
- (1.2.1)If $4 \le a_1 \le 5$, then $a_1a_3, a_1a_4, a_1a_5 \in E(H)$, a contradiction.
- (1.2.2) If $a_1 = 3$, then $a_1a_3, a_1a_4 \in E(H)$, then $a_1a_2 \notin E(H)$, i. e., $4 \le a_2 \le 7$. We have $a_2a_3, a_2a_4, a_2a_5 \in E(H)$ when $4 \le a_2 \le 5$, and $a_2a_5, a_2a_6, a_2a_7 \in E(H)$ when $6 \le a_2 \le 7$, a contradiction.
- (1.2.3) If $a_1=2$, then $a_1a_3\in E(H)$. For $a_0=0$, the remainder 7(q-1) vertices $\{1\}\cup [3,m+1]\setminus \{a_2\}$ in H colored q-1 colors such that each color colored seven consecutive vertices by Claim 1, which is impossible. For $a_0=1$, we have $3\leq a_2\leq m+1$, and $a_2a_3,a_2a_4,a_2a_5\in E(H)$

when $4 \leq a_2 \leq m-3$, $a_0a_2, a_2a_6, a_2a_7 \in E(H)$ when $m-2 \leq a_2 \leq m$, and $a_0a_2, a_1a_2, a_2a_7 \in E(H)$ when $a_2 = m+1$, hence $a_2 = 3$, then $a_1a_3, a_2a_3 \in E(H)$, and the remainder 7(q-1) vertices $\{0\} \cup [4, m+1]$ in H colored q-1 colors, such that each color colored seven consecutive vertices except β colored seven vertices

$$0 < h_1 < h_2 < h_3 < h_4 < h_5 < m+1$$

by Claim 5, but h_2 , h_3 , h_4 are all adjacent to 0 since

$$5 \le h_2 < h_3 < h_4 \le m - 1$$
,

a contradiction.

(1.2.4) If $a_1=1$, then $a_0=0$, thus the remainder 7(q-1) vertices $[2,m+1]\setminus\{a_2\}$ in H colored q-1 colors such that each color colored seven vertices as

$$u \ge 2$$
, $u + 1$, $u + 2$, $u + 3$, $u + 4$, $u + 5$, $u + 6$,

by Claim 1, so m+7 and m+8 would color α and be adjacent to a_3 , so $a_2a_3\notin E(H)$, i. e., $m-2\leq a_2\leq m+1$. If $m-2\leq a_2\leq m$, then $a_0a_2,a_1a_2,a_2a_6\in E(H)$. Hence $a_2=m+1$, so m+8 is adjacent to a_2,a_3,a_4 , a contradiction, too.

(2) Suppose that h = 3, then $a_3 - a_0 \le m$, and $a_4 - a_0 > m$, so $m + 1 \le a_4 \le m + 3$.

If $a_4a_7 \in E(H)$, then $a_7 - a_4 \ge 5$, so $a_7 = m+6$, $a_4 = m+1$, and $a_0 = 0$. By $a_7 - a_1 > m$, we have $1 \le a_1 \le 5$. If $a_1 = 5$, then $a_0a_1, a_1a_5, a_1a_6 \in E(H)$, a contradiction. Hence $1 \le a_1 \le 4$, so $a_1a_4 \in E(H)$, and then $a_2a_4 \notin E(H)$, i. e., $a_4 - a_2 \le 4$, thus $m-3 \le a_2 \le m-1$. For $m-2 \le a_2 \le m-1$, $a_0a_2, a_0a_3, a_2a_7, a_3a_7 \in E(H)$, i. e., a_0, a_2, a_7, a_3 form a 4-cycle, a contradiction. For $a_2 = m-3$, $a_0a_2, a_2a_5, a_2a_6 \in E(H)$, a contradiction. Therefore, $a_4a_7 \notin E(H)$, that is, $a_7 - a_4 \le 4$.

- (2.1) Assume that $a_4 = m+1$, then $a_0 = 0$, $m+4 \le a_7 \le m+5$, and $1 \le a_1 \le 4$, so $a_1a_4 \in E(H)$, and thus $a_3a_4 \notin E(H)$ by Claim 3, i. e., $a_4-a_3 \le 4$, hence $m-3 \le a_3 \le m$.
- (2.1.1) If $m-3 \le a_3 \le m-2$, then $a_0a_3, a_3a_6, a_3a_7 \in E(H)$, a contradiction.
- (2.1.2) If $a_3 = m 1$, then $a_0 a_3, a_3 a_7 \in E(H)$, so $a_1 a_3, a_3 a_6 \notin E(H)$, i. e., $a_3 a_1 \leq 4$, and $a_6 a_3 \leq 4$, hence $a_6 = m + 3$, $a_5 = m + 2$, $3 \leq m 5 \leq a_1 \leq 4$, and a_1, a_4, a_5, a_6 induce a $K_{1,3}$, a contradiction.
- (2.1.3) If $a_3 = m$, then $a_0a_3 \in E(H)$, so $a_2a_3 \notin E(H)$, i. e., $a_3 a_2 \le 4$. If $a_3a_7 \in E(H)$, then $a_7 = m + 5$, and $a_1a_3 \notin E(H)$, i. e., $a_1 \ge m 4$, so $a_2 \ge m 3$, and a_0, a_2, a_7, a_3 induce a 4-cycle, a contradiction. Therefore, $a_3a_7 \notin E(H)$, $a_7 = m + 4$, $a_6 = m + 3$, $a_5 = m + 2$, and $1 \le a_1 \le 3$, thus, $a_1a_3, a_1a_4, a_1a_5 \in E(H)$ when $2 \le a_1 \le 3$, then

 $a_{1}=1$, so $a_{1}a_{3}, a_{1}a_{4} \in E(H)$, and $a_{1}a_{2} \notin E(H)$, that is, $4 \leq m-4 \leq a_{2} \leq a_{1}+4 \leq 5$, hence $a_{2}a_{5}, a_{2}a_{6}, a_{2}a_{7} \in E(H)$, a contradiction.

(2.2) Suppose that $a_4 = m + 2$, then $m + 5 \le a_7 \le m + 6$, $0 \le a_0 \le 1$, and $1 \le a_1 \le 5$.

(2.2.1) Assume that $2 \leq a_1 \leq 5$, then $a_1a_4 \in E(H)$, so $a_3a_4 \notin E(H)$, i. e., $a_4-a_3 \leq 4$, and $m-2 \leq a_3 \leq m+1$.

(2.2.1.1) If $m-2 \le a_3 \le m-1$, then a_0a_3 , $a_3a_6, a_3a_7 \in E(H)$, a contradiction.

(2.2.1.2) If $a_3=m$, then $a_0a_3, a_3a_7 \in E(H)$, so $a_1a_3, a_3a_6 \notin E(H)$, i. e., $a_6-a_3 \le 4$, and $a_3-a_1 \le 4$, thus $a_6=m+4, a_5=m+3, 4 \le m-4 \le a_1 \le 5$, and a_1, a_4, a_5, a_6 induce a $K_{1,3}$, a contradiction.

 $\begin{array}{l} (2.2.1.3) \ \ {\rm If} \ a_3=m+1, \ {\rm then} \ a_0=1, \ {\rm and} \ a_0a_3\in E\ (H), \ {\rm so} \ a_2a_3\notin E\ (H), \ {\rm i.} \ {\rm e.}, \ m-3\le a_2\le m, \ {\rm thus}, \ a_0a_2, a_2a_6, a_2a_7\in E\ (H) \ {\rm when} \ m-2\le a_2\le m-1, \ {\rm and} \ a_2a_4, a_2a_5, a_2a_6\in E\ (H) \ {\rm when} \ a_2=m-3, \ {\rm a} \ {\rm contradiction}. \ \ {\rm Hence} \ a_2=m, \ {\rm so} \ a_0a_2, a_2a_7\in E\ (H), \ {\rm then} \ a_1a_2, a_2a_6\notin E\ (H), \ {\rm i.} \ {\rm e.}, \ a_6-a_2=4, \ {\rm and} \ a_2-a_1\le 4, \ {\rm thus} \ a_6=m+4, \ a_5=m+3, \ 4\le m-4\le a_1\le 5, \ {\rm and} \ a_1, a_4, a_5, a_6 \ {\rm induce} \ {\rm a} \ K_{1,3}, \ {\rm a} \ {\rm contradiction}, \ {\rm too}. \end{array}$

(2.2.2) Assume that $a_1=1$, then $a_0=0$, and $3 \le a_3 \le m$.

(2.2.2.1) If $6 \le a_3 \le m$, then $a_0 a_3, a_1 a_3, a_3 a_7 \in E(H)$, a contradiction.

(2.2.2.2) If $a_3 = 5$, then a_0a_3 , a_3a_4 , $a_3a_5 \in E(H)$, a contradiction.

 $(2.2.2.3) \ \text{If} \ a_3=4 \ \text{, then} \ a_3a_4, a_3a_5 \in E(H) \ \text{, so} \\ a_3a_6 \notin E(H) \ \text{, thus} \ a_7=m+6, a_6=m+5, \text{ and } 2 \leq \\ a_2 \leq 3 \ \text{, hence} \ a_2=3, a_5=m+3, \text{ and} \ a_2, a_3, a_4, a_5 \\ \text{form a 4-cycle when} \ a_2a_5 \in E(H) \ \text{, a contradiction.} \\ \text{Therefore,} \ a_2a_5 \notin E(H). \ \text{ If} \ a_2=3, \text{ then} \ a_5=m+4, \text{ and the remainder} \ 7(q-1) \ \text{vertices} \ [5,m+1] \cup \\ \{2,m+3\} \ \text{in} \ H \ \text{colored} \ q-1 \ \text{colors, such that each} \\ \text{color colored seven consecutive vertices, except some} \\ \text{color} \ \beta \ \text{colored vertices} \\ \end{cases}$

$$2 < h_1 < h_2 < h_3 < h_4 < h_5 < m+3$$

by Claim 5, so β would color m+8 which is adjacent to m+3, h_4 , and h_5 , a contradiction. Hence $a_2=2$, and $m+3 \leq a_5 \leq m+4$. If $a_5=m+4$, then the remainder 7(q-1) vertices $[5,m+1] \cup \{3,m+3\}$ in H colored q-1 colors, such that each color colored seven consecutive vertices by Claim 1, which is impossible. Hence $a_5=m+3$, then the remainder 7(q-1) vertices $[5,m+1] \cup \{3,m+4\}$ in H colored q-1 colors such that each color colored seven consecutive vertices, except some color β colored vertices

$$3 < h_1 < h_2 < h_3 < h_4 < h_5 < m + 4$$
,

but h_1 , h_2 , h_3 are all adjacent to m+4 since $5 \le h_1 < h_2 < h_3 \le m-1$, a contradiction.

(2.2.2.4) Assume that $a_3=3$, then $a_2=2$, so $a_2a_4, a_3a_4 \in E(H)$. If $a_7=m+5$, then $a_6=m+4$, and $a_5=m+3$, so the remainder 7(q-1) vertices $[4,m+1] \cup \{m+6\}$ in H colored q-1 colors, such that each color colored seven consecutive vertices except some color β colored vertices

$$4 < h_1 < h_2 < h_3 < h_4 < h_5 < m + 6$$

by Claim 5, but h_3 , h_4 , h_5 are all adjacent to m+6 since

$$7 \le h_3 < h_4 < h_5 \le m+1$$
,

a contradiction. Hence $a_7=m+6$. If $a_6=m+5$, then the remainder 7(q-1) vertices $[4,m+1] \cup \{m+3\}$ or $[4,m+1] \cup \{m+4\}$ in H colored q-1 colors, such that each color colored seven consecutive vertices by Claim 1, which is impossible. Therefore, $a_6=m+4$, and $a_5=m+3$, then the remainder 7(q-1) vertices $[4,m+1] \cup \{m+5\}$ in H colored q-1 colors, such that each color colored seven consecutive vertices except some color β colored vertices

$$4 < h_1 < h_2 < h_3 < h_4 < h_5 < m + 5$$

by Claim 5, but h_1 , h_2 , h_3 are all adjacent to m+5 since

$$5 \le h_1 < h_2 < h_3 \le m - 1,$$

a contradiction, too.

(2.3) Assume that $a_4 = m+3$, then $a_5 = m+4$, $a_6 = m+5, a_7 = m+6$, and $0 \le a_0 \le 2$.

(2.3.1) If $6 \le a_3 \le m - 1$, then a_3a_5 , a_3a_6 , $a_3a_7 \in E(H)$, a contradiction.

(2.3.2) If $a_3 = m$, then a_0a_3 , a_3a_6 , $a_3a_7 \in E(H)$, a contradiction.

(2.3.3) If $a_3 = m + 1$, then $1 \le a_0 \le 2$, so $a_0a_3, a_3a_7 \in E(H)$, thus $a_1a_3, a_3a_6 \notin E(H)$, so $a_3 - a_1 \le 4$ and $a_7 - a_3 = 5$, hence $9 \le m + 1 \le a_7 - a_1 \le 9$, thus $a_7 - a_1 = 9$, i. e., $a_1 = 5$, and $a_1a_4, a_1a_5, a_1a_6 \in E(H)$, a contradiction.

 $\begin{array}{l} (2.3.4) \text{ Assume that } a_3=m+2, \text{ then } a_0=2, \text{ and } \\ 3\leq a_1\leq 5, \text{ so } a_0a_3, a_1a_3\in E(H), \text{ hence } a_2a_3\notin E(H), \text{ i. e., } m-2\leq a_2\leq m+1. \text{ If } a_2=m-2, \\ \text{then } a_2a_4, a_2a_5, a_2a_6\in E(H), \text{ a contradiction. If } \\ m-1\leq a_2\leq m+1, \text{ then } a_0a_2, a_2a_7\in E(H), \\ \text{so } a_2a_6\notin E(H), \text{ i. e., } a_6-a_2=4, \text{ and } a_2=m+1, \text{ thus, } a_1a_2\in E(H) \text{ and } a_0, a_2, a_1, a_3 \text{ induce } \\ a\text{ 4-cycle when } 3\leq a_1\leq 4, \text{ and } a_1, a_3, a_4, a_5 \text{ induce } \\ aK_{1,3} \text{ when } a_1=5, \text{ a contradiction.} \end{array}$

(2.3.5) If $a_3=5$, then $a_3a_4,a_3a_5,a_3a_6\in E(H)$, a contradiction.

(2.3.6) If $a_3 = 4$ and $a_0 = 1$, then $a_1 = 2$, $a_2 = 3$, and $a_3a_4, a_3a_5, a_2a_4 \in E(H)$, so the remainder 7(q-1) vertices $\{0\} \cup [5, m+2]$ in H colored q-1

colors, such that each color colored seven consecutive vertices, except some color β colored vertices

$$0 < h_1 < h_2 < h_3 < h_4 < h_5 < m+2$$

by Claim 5, but h_1 , h_2 , h_3 are all adjacent to 0 since $5 \le h_1 < h_2 < h_3 \le m-1$, a contradiction. If $a_3 = 4$ and $a_0 = 0$, then a_2 is 2 or 3 when $a_1 = 1$, and in this case the remainder 7(q-1) vertices $\{2\} \cup [5, m+2]$ or $\{3\} \cup [5, m+2]$ in H colored q-1 colors, such that each color colored seven consecutive vertices which is impossible, hence $a_1 = 2$, $a_2 = 3$, a_2a_4 , $a_3a_4 \in E(H)$, and in this case the remainder 7(q-1) vertices $\{1\} \cup [5, m+2]$ in H colored q-1 colors, such that each color colored seven consecutive vertices, except some color β colored vertices

$$1 < h_1 < h_2 < h_3 < h_4 < h_5 < m+2$$

by Claim 5, but h_2 , h_3 , h_4 are all adjacent to 1 since

$$6 \le h_2 < h_3 < h_4 \le m$$

a contradiction.

(2.3.7) If $a_3=3$, then $a_1=1$, $a_2=2$,and $a_0=0$, so the remainder 7(q-1) vertices [4,m+2] in H colored q-1 colors, such that each color colored seven consecutive vertices as

$$u \ge 4$$
, $u + 1$, $u + 2$, $u + 3$, $u + 4$, $u + 5$, $u + 6$,

thus m+10 would color α and be adjacent to a_4 , a_5 , a_6 , a contradiction, too.

Case 2.
$$5 \le a_4 - a_0 \le m$$
.

Since $a_0a_4 \in E(H)$, we have $a_0a_2, a_2a_4, a_1a_3 \notin E(H)$ by Claim 3, i. e., $a_2-a_0 \leq 4$, $a_4-a_2 \leq 4$, and $a_3-a_1 \leq 4$, then $5 \leq a_4-a_0 \leq 8$. By $a_7-a_1 \geq m+1$, we have $a_7-a_0 \geq m+2$. In the following we shall get a contradiction according to the related positions of a_0 and a_4 .

It is obvious that

$$a_6 - a_4 = (a_6 - a_0) - (a_4 - a_0)$$

 $\geq m + 1 - 5 \geq m - 4.$

(1) Suppose that $a_4 - a_0 = 5$.

(1.1) Assume that $a_4=5$, then $a_0=0$. If $m+2\leq a_7\leq m+5$, then $a_4a_7\in E(H)$, so $a_4a_6\notin E(H)$, i. e., $4\leq m-4\leq a_6-a_4\leq 4$, then m=8, $a_6=9$, and $a_1a_6,a_2a_6,a_3a_6\in E(H)$, a contradiction. Hence $a_7=m+6$, so $a_1a_6,a_2a_6,a_3a_6\in E(H)$ if $a_6=m+1$, a contradiction. Therefore, $m+2\leq a_6\leq m+5$, then $a_4a_6\in E(H)$, so $a_4a_5\notin E(H)$, i. e., $6\leq a_5\leq 9$, we have $a_1a_5,a_2a_5,a_3a_5\in E(H)$ when $a_5=9$, $a_0a_5,a_1a_5,a_5a_7\in E(H)$ when $7\leq a_5\leq 8$, thus we

have $a_5 = 6$, and $a_0a_5, a_5a_7 \in E(H)$, which induces $a_5a_6 \notin E(H)$, i. e., $10 \le m+2 \le a_6 \le 10$, that is, $a_6 = 10$, m = 8,and $a_2a_6, a_3a_6, a_4a_6 \in E(H)$, a contradiction.

(1.2) If $a_4 \geq 6$, then $a_4a_6 \notin E(H)$ (otherwise, a_0, a_4, a_6, a_7 induce a $K_{1,3}$), i. e., $4 \leq m-4 \leq a_6-a_4 \leq 4$, thus $m=8, a_6-a_4=4$, so $a_4a_7 \in E(H)$, and $a_4-a_1 \leq 4$, hence $a_1a_6, a_2a_6, a_3a_6 \in E(H)$, a contradiction, too.

(2) Suppose that $a_4 - a_0 = 6$, then $a_7 - a_4 = (a_7 - a_0) - (a_4 - a_0) \ge m - 4$.

 $\begin{array}{l} (2.1) \text{ Assume that } a_7-a_4\geq m-3, \text{ then } a_4a_7\in E\left(H\right), \text{ so } a_1a_4, a_4a_6\notin E\left(H\right), \text{ i. e., } a_4-a_1\leq 4,\\ a_6-a_4\leq 4, \text{ and } a_1-a_0=(a_4-a_0)-(a_4-a_1)\geq 2,\\ \text{thus } 3\leq a_2-a_0\leq 4. \text{ Hence } 5\leq a_6-a_1\leq 8, \text{ and }\\ m-3\leq (a_6-a_0)-(a_2-a_0)=a_6-a_2=(a_6-a_4)+(a_4-a_2)\leq 8, \text{ so } a_1a_6, a_2a_6\in E\left(H\right), \text{ then }\\ a_3a_6, a_6a_7\notin E\left(H\right), \text{ i. e., } a_6-a_3\leq 4, a_7-a_6\leq 4,\\ \text{thus } 4\leq m-4\leq a_6-a_2-1\leq a_6-a_3\leq 4. \end{array}$ Therefore, m=8, and $a_6-a_3=4.$ Moreover,

$$5 \le a_7 - a_4 < a_7 - a_3$$

= $(a_7 - a_6) + (a_6 - a_3) \le 8$,

and

$$m-3 \le (a_6-a_0) - (a_6-a_3)$$

= $a_3 - a_0 < a_4 - a_0 \le 8$,

so $a_0a_3, a_0a_4, a_3a_7, a_4a_7 \in E(H)$, i. e., a_0, a_3, a_4, a_7 form a 4-cycle, a contradiction.

(2.2) Assume that $a_7 - a_4 = m - 4$. Then

$$a_7 - a_0 = (a_7 - a_4) + (a_4 - a_0) = m + 2,$$

and
$$a_6 - a_0 = m + 1$$
, so $a_1 - a_0 = 1$, $a_7 - a_1 = m + 1$,

$$a_4 - a_1 = (a_7 - a_1) - (a_7 - a_4) = 5,$$

and

$$a_6 - a_1 = (a_6 - a_0) - (a_1 - a_0) = m$$

thus $a_1a_4, a_1a_5, a_1a_6 \in E(H)$, a contradiction.

(3) Suppose that $a_4 - a_0 = 7$, then

$$a_7 - a_4 = (a_7 - a_0) - (a_4 - a_0) \ge m - 5.$$

(3.1) Assume that

$$a_7 - a_4 \ge m - 3$$
.

Then $a_4a_7 \in E(H)$, so $a_1a_4, a_4a_6 \notin E(H)$, i. e., $a_4 - a_1 \le 4$, and $a_6 - a_4 \le 4$. Hence

$$a_1 - a_0 = (a_4 - a_0) - (a_4 - a_1) \ge 3$$
,

and then $a_2 - a_0 = 4$, and $a_4 - a_2 = 3$. Thus

$$5 \le a_6 - a_2 < a_6 - a_1 \le 8,$$

so $a_1a_6, a_2a_6 \in E(H)$, and then $a_3a_6, a_6a_7 \notin E(H)$, i. e., $a_6 - a_3 \le 4$, and $a_7 - a_6 \le 4$, hence

$$m-3 \le (a_6-a_0) - (a_6-a_3)$$

= $a_3 - a_0 < a_4 - a_0 = 7$,

which induces m = 8, and

$$5 \le a_7 - a_4 < a_7 - a_3 = a_7 - a_6 + a_6 - a_3 \le 8$$

therefore a_0 , a_3 , a_4 , a_7 form a 4-cycle, a contradiction.

(3.2) Assume that

$$a_7 - a_4 = m - 4$$
,

then

$$a_7 - a_0 = (a_7 - a_4) + (a_4 - a_0) = m + 3,$$

and

$$m+1 \le a_7 - a_1 \le m+2$$
,

so

$$5 \le (a_7 - a_1) - (a_7 - a_4) = a_4 - a_1 \le 6$$

and $a_1a_4 \in E(H)$, thus $a_4a_7 \notin E(H)$, i. e.,

$$a_7 - a_4 = m - 4 \le 4$$
,

that is, $a_7 - a_4 = 4$, and m = 8. Clearly, $2 \le a_6 - a_4 \le 3$, and $1 \le a_5 - a_4 \le 2$ in this case.

(3.2.1) If $a_4 - a_1 = 5$, then $a_1a_4, a_1a_5, a_1a_6 \in E(H)$, a contradiction.

(3.2.2) If $a_4 - a_1 = 6$, then $a_1 - a_0 = 1$, so we have $a_1a_5 \in E(H)$, thus $a_5 - a_4 = 2$ (otherwise, $a_5 - a_4 = 1$, and a_0 , a_4 , a_1 , a_5 induce a 4-cycle), and $a_7 - a_6 = a_6 - a_5 = 1$, hence a_0 , a_2 , a_3 , a_4 induce a $K_{1,3}$ when $a_4 - a_2 = 2$, and a_2 , a_5 , a_6 , a_7 induce a $K_{1,3}$ when $3 \le a_4 - a_2 \le 4$, a contradiction.

(3.3) Assume that

$$a_7 - a_4 = m - 5.$$

Then

$$a_7 - a_0 = (a_7 - a_4) + (a_4 - a_0) = m + 2,$$

$$a_6 - a_0 = m + 1$$
, and $a_1 - a_0 = 1$, so

$$a_4 - a_1 = (a_4 - a_0) - (a_1 - a_0) = 6,$$

 $a_6 - a_1 = (a_6 - a_0) - (a_1 - a_0) = m,$

and $a_1a_4, a_1a_5, a_1a_6 \in E(H)$, a contradiction, too.

(4) Suppose that $a_4 - a_0 = 8$, then $a_0 a_4 \in E(H)$, and $a_4 - a_2 = 4$ by Claim 3, so $a_1 a_4 \in E(H)$,

and thus $a_4a_7 \notin E(H)$, i. e., $a_7 - a_4 \leq 4$, hence $a_2a_5, a_2a_6, a_2a_7 \in E(H)$, a contradiction.

By two cases above, we have $a_4 - a_0 \le 4$, i. e., $a_4 - a_0 = 4$. Hence Subclaim 7. 1 holds.

Subclaim 7.2 $a_0 = 0$.

Otherwise, we have $a_0 \ge 1$, and $2 \le a_1 \le 5$ by $a_7 - a_1 > m$.

- (1) If $a_1 = 5$, then $a_0 = 4$, $a_2 = 6$, $a_3 = 7$, $a_4 = 8$, $a_7 = m+6$, and $a_6 = m+5$, so a_1a_6 , a_2a_6 , $a_3a_6 \in E(H)$, a contradiction.
- (2) If $a_1=4$, then $a_0=3$, $a_2=5$, $a_3=6$, $a_4=7$, and $m+4\leq a_6\leq m+5$, so $a_2a_6,a_3a_6,a_4a_6\in E(H)$, a contradiction.
- (3) If $a_1=3$, $a_0=2$, $a_2=4$, $a_3=5$, $a_4=6$, then $m+3\leq a_6\leq m+5$, so $a_3a_6,a_4a_6\in E(H)$, thus $a_2a_6,a_5a_6\notin E(H)$, i. e., $a_6-a_2\geq m+1$, and $a_6-a_5\leq 4$, hence $a_6=m+5,a_7=m+6$, and $a_5\geq m+1$. Clearly, $a_4a_7\in E(H)$, so $a_4a_5\notin E(H)$, i. e., $9\leq m+1\leq a_5\leq 10$, thus $a_0a_5,a_1a_5,a_2a_5\in E(H)$, a contradiction.
- (4) Suppose that $a_1 = 2$, then $a_0 = 1$, $a_2 = 3$, $a_3 = 4$, $a_4 = 5$,

$$m+2 \le a_6 \le m+5$$
,

and

$$m+3 \le a_7 \le m+6,$$

so $a_4a_6 \in E(H)$, and thus $a_4a_5 \notin E(H)$ or $a_5a_6 \notin E(H)$.

- (4.1) Assume that $a_4a_5 \notin E(H)$, then $a_5 a_4 \le 4$, i. e., $6 \le a_5 \le 9$.
- (4.1.1) If $8 \le a_5 \le 9$, then $a_0a_5, a_1a_5, a_2a_5 \in E(H)$, a contradiction.
- (4.1.2) If $a_5 = 7$, then $a_0a_5, a_1a_5 \in E(H)$, so $a_5a_7 \notin E(H)$, i. e.,

$$11 \le m + 3 \le a_7 \le 11$$
,

hence $a_7 = 11, m = 8$ and $a_2a_7, a_3a_7, a_4a_7 \in E(H)$, a contradiction.

(4.1.3) If $a_5 = 6$, then $a_0 a_5, a_5 a_7 \in E(H)$, so $a_5 a_6 \notin E(H)$, i. e.,

$$10 \le m + 2 \le a_6 \le 10$$
,

hence $a_6=10$, m=8, and $a_1a_6,a_2a_6,a_3a_6 \in E(H)$, a contradiction, too.

(4.2) Assume that $a_4a_5 \in E(H)$, and $a_5a_6 \notin E(H)$, then $a_3a_5 \in E(H)$, $a_6 - a_5 \le 4$, so $a_2a_5 \notin E(H)$, i. e., $a_5 \ge m+4$, hence $a_5 = m+4 = a_6 - 1 = a_7 - 2$. Therefore, the remainder 7(q-1) vertices $\{0\} \cup [6, m+3]$ in H colored q-1 colors, such that each color colored seven consecutive vertices, except some color β colored vertices

$$0 < h_1 < h_2 < h_3 < h_4 < h_5 < m + 3$$
,

but h_1 , h_2 , h_3 are all adjacent to 0 since

$$6 \le h_1 \le h_2 \le h_3 \le m$$
,

a contradiction, too.

Therefore, $a_0 = 0$, and then Subclaim 7.2 is proved.

In a word, we have $a_4 \leq 4$, and Claim 7 holds.

Claim 8: $a_6 \ge 7(q-1)+6$, that is, $a_6 = 7q-1$, and $a_7 = 7q$.

If $a_6 \le 7q - 2$, i. e., $a_6 \le m + 4$, then $a_4a_6 \in E(H)$, so $a_4a_5 \notin E(H)$ or $a_5a_6 \notin E(H)$.

- (1) Suppose that $a_4a_5 \notin E(H)$, then $5 \le a_5 \le 8$.
- (1.1) If $7 \le a_5 \le 8$, then $a_0a_5, a_1a_5, a_2a_5 \in E(H)$, a contradiction.
- (1.2) If $a_5 = 6$, then $a_0a_5, a_1a_5 \in E(H)$, so $a_5a_7 \notin E(H)$, and $10 \le m+2 \le a_7 \le 10$, thus $a_7 = 10$, m = 8, $a_6 = 9$, and $a_2a_7, a_3a_7, a_4a_7 \in E(H)$, a contradiction.
- (1.3) Assume that $a_5=5$, then $a_0a_5\in E(H)$. If $m+2\leq a_7\leq m+5$, then $a_5a_7\in E(H)$, so $a_5a_6\notin E(H)$, i. e., $9\leq m+1\leq a_6\leq 9$, thus $a_6=9,\ m=8$, and $a_1a_6,a_2a_6,a_3a_6\in E(H)$, a contradiction. Hence $a_7=m+6$, and then the remainder 7(q-1) vertices $[6,m+5]\setminus\{a_6\}$ in H colored q-1 colors, such that each color colored seven consecutive vertices by Claim 1, which is impossible since $m+1\leq a_6\leq m+4$.
- (2) Suppose that $a_4a_5 \in E(H)$, and $a_5a_6 \notin E(H)$. Then $a_3a_5 \in E(H)$, so $a_7 a_5 \le 4$, $a_6 a_3 \ge m+1$, and $a_5 a_2 \ge m+1$, hence $a_6 = m+4$ and $a_5 = m+3$. If $a_7 = m+6$, then the remainder 7(q-1) vertices $[5, m+2] \cup \{m+5\}$ in H colored q-1 colors, such that each color colored seven consecutive vertices by Claim 1, which is impossible. Hence $a_7 = m+5$, and the remainder 7(q-1) vertices $[5, m+2] \cup \{m+6\}$ in H colored q-1 colors, such that each color colored seven consecutive vertices, except some color β colored vertices

$$5 < h_1 < h_2 < h_3 < h_4 < h_5 < m + 6$$
,

but h_1 , h_2 , h_3 are all adjacent to m + 6 since

$$6 \le h_1 < h_2 < h_3 \le m$$

a contradiction, too.

Therefore, we have $a_6 = 7q - 1$, and $a_7 = 7q$.

Claim 9: $a_5 = 5$ or $a_5 = m + 4$. Assume that

$$6 \le a_5 \le m + 3$$
.

If

$$6 \le a_5 \le m$$
,

then $a_0a_5, a_1a_5, a_5a_7 \in E(H)$, a contradiction. If

$$m+1 \le a_5 \le m+2$$
,

then $a_2a_5, a_3a_5, a_4a_5 \in E(H)$, a contradiction. If $a_5 = m+3$, then the remainder 7(q-1) vertices $[5, m+2] \cup \{m+4\}$ in H colored q-1 colors, such that each color colored seven consecutive vertices by Claim 1, which is impossible. Hence Claim 9 holds.

Without loss of generality, suppose that $a_5=5$. Then the remainder 7(q-1) vertices [6,m+4] in H colored q-1 colors, such that each color colored seven consecutive vertices as $(6 \le)u, u+1, \cdots, u+6$ by Claim 1, hence m+11, m+12 would color α and induce a 4-cycle along with a_6, a_7 , a contradiction,

In a word, we have shown that

$$vla\left(G\left(D_{m,1,4}\right)\right) \geq \left\lceil \frac{m}{7} \right\rceil + 1.$$

Therefore, we obtain that

$$vla\left(G\left(D_{m,1,4}\right)\right) = \left\lceil \frac{m}{7} \right\rceil + 1.$$

Acknowledgements: The research is supported by NSFC for youth with code 61103073.

References:

- [1] J. Akiyama, H. Era, S. V. Gerracio and M. Watanabe, Path chromatic numbers of graphs, *J. Graph Theory*, 13, 1989, pp.569-579.
- [2] G. J. Chang, D. D.-F. Liu and X. D. Zhu, Distance graphs and T-coloring, *J. Combin. Theory, Ser. B*, 75, 1999, pp.259-269.
- [3] R. B. Eggleton, P. Erdös and D.K. Skilton, Colouring the real line, *J. Combin. Theory, Ser. B*, 39, 1985, pp.86-100.
- [4] R. B. Eggleton, P. Erdös and D.K. Skilton, Colouring prime distance graphs, *Graphs and combinatorics*, 6,1990, pp.17-32.
- [5] W. Goddard, Acyclic coloring of planar graphs, *Discrete Mathematics*, 91,1991, pp.91-94.
- [6] A. Kemnitz and H. Kolbery, Coloring of integer distance graphs, *Discrete Mathematics*, 191, 1998, pp.113-123.
- [7] S. He, L. Zuo, and S. Zhang, The linear k-arboricity of the Mycielski graph $M(K_n)$, WSEAS Transactions on Mathematics, accepted.
- [8] Xuejiao Jiang and Yuqin Zhang, Randomly M_t -decomposable multigraphs and M_2 -equipackable multigraphs, WSEAS transactions on Mathematics, 12 (2),2013, pp.211-220.

- [9] H. Lai, Y. Shao, and H. Yan, An update supereulerian graphs, *WSEAS transactions on Mathematics*, 12 (9), 2013, pp.926-940.
- [10] D. D.-F. Liu and X. D. Zhu, Distance graphs with missing multiples in the distance sets, *J. Graph Theory*, 30, 1999, pp.245-259.
- [11] M. Matsumoto, Bounds for the vertex linear arboricity, *J. Graph Theory*, 14,1990, pp.117-126.
- [12] K. Poh, On the linear vertex-arboricity of a planar graph, *J. Graph Theory*, 14,1990, pp.73-75.
- [13] M. Voigt and H. Walther, Chromatic number of prime distance graphs, *Discrete Applied Mathematics*, 51, 1994, pp.197-209.
- [14] M. Voigt, Colouring of distaince graphs, *Ars Combinatoria*, 52,1999, pp.3-12.
- [15] L. Zuo, J. Wu and J. Liu, The Vertex Linear Arboricity of an Integer Distance Graph with a Special Distance Set, *Ars Combinatoria*, 79(2), 2006, pp.65-76.
- [16] L. Zuo, J. Wu and J. Liu, The vertex linear arboricity of distance graphs, *Discrete Mathematics*, 306(2), 2006, pp.284-289.
- [17] L. Zuo, Q. Yu and J. Wu, Tree coloring of distance graphs with a real interval set, *Applied Mathematics Letter*, 19(12), 2006, pp.1341-1344.
- [18] L. Zuo, B. Li and J. Wu, The vertex linear arboricity of a special class of integer distance graphs, *Ars Combinatoria*, 111, 2013, pp.427-444.